Your search found 2 records
1 Wu, S.; Deng, L.; Guo, L.; Wu, Y. 2022. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery. Plant Methods, 18:68. [doi: https://doi.org/10.1186/s13007-022-00899-7]
Leaf area index ; Forecasting ; Unmanned aerial vehicles ; Thermal infrared imagery ; Data fusion ; Machine learning ; Estimation ; Wheat ; Vegetation index ; Remote sensing ; Satellites ; Biomass ; Models / China / Henan
(Location: IWMI HQ Call no: e-copy only Record No: H051401)
https://plantmethods.biomedcentral.com/counter/pdf/10.1186/s13007-022-00899-7.pdf
https://vlibrary.iwmi.org/pdf/H051401.pdf
(7.53 MB) (7.53 MB)
Background: Leaf Area Index (LAI) is half of the amount of leaf area per unit horizontal ground surface area. Consequently, accurate vegetation extraction in remote sensing imagery is critical for LAI estimation. However, most studies do not fully exploit the advantages of Unmanned Aerial Vehicle (UAV) imagery with high spatial resolution, such as not removing the background (soil and shadow, etc.). Furthermore, the advancement of multi-sensor synchronous observation and integration technology allows for the simultaneous collection of canopy spectral, structural, and thermal data, making it possible for data fusion.
Methods : To investigate the potential of high-resolution UAV imagery combined with multi-sensor data fusion in LAI estimation. High-resolution UAV imagery was obtained with a multi-sensor integrated MicaSense Altum camera to extract the wheat canopy's spectral, structural, and thermal features. After removing the soil background, all features were fused, and LAI was estimated using Random Forest and Support Vector Machine Regression.
Results: The results show that: (1) the soil background reduced the accuracy of the LAI prediction of wheat, and soil background could be effectively removed by taking advantage of high-resolution UAV imagery. After removing the soil background, the LAI prediction accuracy improved significantly, R2 raised by about 0.27, and RMSE fell by about 0.476. (2) The fusion of multi-sensor synchronous observation data could achieve better accuracy (R2 = 0.815 and RMSE = 1.023), compared with using only one data; (3) A simple LAI prediction method could be found, that is, after selecting a few features by machine learning, high prediction accuracy can be obtained only by simple multiple linear regression (R2 = 0.679 and RMSE = 1.231), providing inspiration for rapid and efficient LAI prediction of wheat.
Conclusions: The method of this study can be transferred to other sites with more extensive areas or similar agriculture structures, which will facilitate agricultural production and management.

2 Kolarik, N. K.; Roopsind, A.; Pickens, A.; Brandt, J. S. 2023. A satellite-based monitoring system for quantifying surface water and mesic vegetation dynamics in a semi-arid region. Ecological Indicators, 147:109965. (Online first) [doi: https://doi.org/10.1016/j.ecolind.2023.109965]
Surface water ; Water resources ; Satellites ; Remote sensing ; Monitoring systems ; Vegetation ; Semiarid zones ; Restoration ; Data fusion ; Land use ; Water availability ; Landscape ; Riparian zones / United States of America
(Location: IWMI HQ Call no: e-copy only Record No: H051700)
https://www.sciencedirect.com/science/article/pii/S1470160X23001073/pdfft?md5=6875ffa9aa8c0ae7220a3d5d089883ef&pid=1-s2.0-S1470160X23001073-main.pdf
https://vlibrary.iwmi.org/pdf/H051700.pdf
(15.70 MB) (15.7 MB)
Semi-arid and arid systems cover one third of the earth’s land surface, and are becoming increasingly drier, but existing datasets do not capture all of the types of water resources that sustain these systems. In semi-arid environments, small surface water bodies and areas of mesic vegetation (wetlands, wet meadows, riparian zones) function as critical water resources. However, the most commonly-used maps of water resources are derived from the Landsat time series or single date aerial photographs, and are too coarse either spatially or temporally to effectively monitor water resource dynamics. In this study, we produced a Sentinel Fusion (SF) water resources product for a semi-arid mountainous region of the western United States, which includes monthly maps of both a) surface water and b) mesic vegetation at 10 m spatial resolution using freely available Earth observation data on an open access platform. We applied random forest classifiers to optical data from the Sentinel-2 time series, synthetic aperture radar (SAR) data from the Sentinel-1 time series, and topographic variables. We compared our SF product with three commonly used and publicly available datasets in the western U.S. We found that our surface water class contained fewer omission errors than a leading global surface water product in (94 % producer’s accuracy (PA) vs 84 %) and comparable user’s accuracy (UA) (91 % vs 97 %) with commission errors occurring largely in mixed water pixels. Our mesic vegetation class had up to 43 % higher PAs compared to the National Wetlands Inventory (NWI) estimates and up to 78 % higher UAs over the Sage Grouse Initiative mesic resources maps during the most critical part of the water year. We found that while inclusion of SAR data from the C-band Sentinel-1 sensor consistently improved estimates of water resources in each of the last four months of the 2021 water year when compared to optical-only + topographic variables, only in September did those improvements lie outside of the 95 % confidence interval. With nine times finer spatial resolution and more frequent image collection, our SF maps characterize intra-annual dynamics of smaller water bodies (<30 m wide) and mesic vegetation integral to ecosystem functioning in semi-arid systems compared to leading Landsat-derived products. Further, our workflow is easily reproducible using freely available data on an open access platform, and can be adopted to help guide land use decisions related to water resources by farmers, ranchers, and conservationists in semi-arid environments.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO