Your search found 4 records
1 Bruggeman, A.; Ouessar, M.; Mohtar, R. H. (Eds.) 2008. Watershed management in dry areas, challenges and opportunities: proceedings of a workshop held in Jerba, Tunisia, 4-7 January 2005. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas (ICARDA). 173p.
Watershed management ; Water resource management ; Soil conservation ; Soil types ; Water conservation ; Soil management ; Arid lands ; Mountains ; Highlands ; Reservoirs ; Assessment ; GIS ; Water harvesting ; Runoff ; Sedimentation ; Infiltration ; Hydrology ; Analysis ; Rain ; Flooding ; Drought ; Models ; Calibration ; Rural areas ; Water table ; Groundwater recharge ; Wells ; Supplemental irrigation ; Cost benefit analysis ; Case studies / North Africa / Middle East / Morocco / Tunisia / Yemen / Algeria / USA / Oum Zessar Watershed / Red Sea / Walnut Gulch Watershed / Kamech Watershed / Zaghouan / Oued Zioud Watershed
(Location: IWMI HQ Call no: 333.91 G229 BRU Record No: H034797)
http://vlibrary.iwmi.org/pdf/H034797_TOC.pdf
(0.60 MB)

2 Mechlia, N. B.; Oweis, T.; Masmoudi, M.; Khatteli, H.; Ouessar, M.; Sghaier, N.; Anane, M.; Sghaier, M. 2009. Assessment of supplemental irrigation and water harvesting potential: methodologies and case studies from Tunisia. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas (ICARDA) 35p.
Supplemental irrigation ; Water harvesting / Tunisia / Oum Zessar watershed
(Location: IWMI HQ Call no: 631.7 G240 MEC Record No: H042777)
http://vlibrary.iwmi.org/pdf/H042777_TOC.pdf
(6.63 MB)

3 Reinhardt, J.; Liersch, S.; Abdeladhim, M. A.; Diallo, M.; Dickens, Chris; Fournet, S.; Hattermann, F. F.; Kabaseke, C.; Muhumuza, M.; Mul, Marloes L.; Pilz, T.; Otto, I. M.; Walz, A. 2018. Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management: evidence from four case studies in Africa. Ecology and Society, 23(1):1-34. [doi: https://doi.org/10.5751/ES-09728-230105]
Natural resources management ; Participatory research ; Sustainability ; Assessment ; Stakeholders ; Watersheds ; River basins ; Political aspects ; Case studies / South Africa / Tunisia / Uganda / Mali / Oum Zessar Watershed / Rwenzori Region / Inner Niger Delta / Upper Thukela Basin
(Location: IWMI HQ Call no: e-copy only Record No: H048530)
https://www.ecologyandsociety.org/vol23/iss1/art5/ES-2017-9728.pdf
https://vlibrary.iwmi.org/pdf/H048530.pdf
(2.43 MB)
Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.

4 Adham, A.; Wesseling, J. G.; Abed, R.; Riksen, M.; Ouessar, M.; Ritsema, C. J. 2019. Assessing the impact of climate change on rainwater harvesting in the Oum Zessar Watershed in southeastern Tunisia. Agricultural Water Management, 221:131-140. [doi: https://doi.org/10.1016/j.agwat.2019.05.006]
Rainwater harvesting ; Techniques ; Climate change ; Water availability ; Watersheds ; Models ; Evapotranspiration ; Catchment areas ; Precipitation ; Temperature ; Forecasting / Tunisia / Oum Zessar Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H049324)
https://vlibrary.iwmi.org/pdf/H049324.pdf
(2.02 MB)
Climate change is believed to have a large impact on water resources system both globally and regionally. It has become a major global issue, especially in developing countries because these are most affected by its impacts. Rainwater harvesting techniques offer an alternative source of water and represent specific adaptive strategies to cope with water scarcity within future climate change. Studying the impact of climate change on rainwater harvesting techniques, however, is difficult, because the general circulation models (GCMs) which are widely used to simulate scenarios of future climate change operate on a coarse scale. We estimated the impact of climate change on water availability at the watershed level by downscaling precipitation and temperature from the GCMs using a statistical downscaling model. A water harvesting model then assessed the performance of the rainwater harvesting techniques for the Oum Zessar watershed in southeastern Tunisia under current climatic conditions and scenarios of future climate change. Annual temperature tended to increase and precipitation tended to decrease. These changes of climatic variables were used in the water harvesting model to simulate future water availability. Changing the directions of water flow between sub-catchments in combination with changing the spillway heights strongly affected the performance of rainwater harvesting under the scenarios of future climate, resulting in a sufficient water supply for 92% of all sub-catchments, compared to 72% without these changes.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO