Your search found 5 records
1 Zahid, A.; Ahmed, S. R. U. 2006. Groundwater resources development in Bangladesh: contribution to irrigation for food security and constraints to sustainability. In Sharma, Bharat R.; Villholth Karen G.; Sharma, K. D. (Eds.). Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005. Colombo, Sri Lanka: International Water Management Institute (IWMI) pp.27-46.
Groundwater irrigation ; Tube wells ; Pumps ; Cost benefit analysis ; Water policy ; Water pollution ; Salinity ; Water quality ; Aquifers ; Food security / Bangladesh
(Location: IWMI-HQ Call no: IWMI 333.9104 G000 SHA Record No: H039306)
https://publications.iwmi.org/pdf/H039306.pdf
(0.4 MB)

2 Jain, S. K.; Sharma, Bharat R.; Zahid, A.; Jin, M.; Shreshtha, J. L.; Kumar, V.; Rai, S. P.; Hu, J.; Luo, Y.; Sharma, D. 2009. A comparative analysis of the hydrology of the Indus-Gangetic and Yellow River basins. In Mukherji, Aditi; Villholth, K. G.; Sharma, Bharat R.; Wang, J. (Eds.) Groundwater governance in the Indo-Gangetic and Yellow River basins: realities and challenges. London, UK: CRC Press. pp.43-64. (IAH Selected Papers on Hydrogeology 15)
Hydrogeology ; River basins ; Groundwater irrigation ; Irrigation systems ; Aquifers ; Water use / China / India / Pakistan / Bangladesh / Nepal / Indus Basin / Ganges Basin / Yellow River Basin / Ordos Basin / Huang-Huai-Hai plain
(Location: IWMI HQ Call no: IWMI 631.7.6.3 G570 MUK Record No: H042222)
https://vlibrary.iwmi.org/pdf/H042222.pdf
(0.51 MB)

3 Zahid, A.; Haque, M. A.; Islam, M. S.; Hassan, M. A. F. M. R. 2009. The impact of shallow tubewells on irrigation water availability, access, crop productivity and farmers' income in the lower Gangetic Plain of Bangladesh. In Mukherji, Aditi; Villholth, K. G.; Sharma, Bharat R.; Wang, J. (Eds.) Groundwater governance in the Indo-Gangetic and Yellow River basins: realities and challenges. London, UK: CRC Press. pp.141-162. (IAH Selected Papers on Hydrogeology 15)
Groundwater irrigation ; Aquifers ; Sedimentary materials ; Surveys ; Rivers ; Villages ; Shallow tube wells ; Water availability ; Irrigation water ; Crop production ; Productivity ; Soil properties ; Farm income ; Water market ; Pumping ; Energy / Bangladesh / Lower Gangetic Plain
(Location: IWMI HQ Call no: IWMI 631.7.6.3 G570 MUK Record No: H042227)

4 Saha, D.; Zahid, A.; Shrestha, S. R.; Pavelic, Paul. 2016. Groundwater resources. In Bharati, Luna; Sharma, Bharat R.; Smakhtin, Vladimir (Eds.). The Ganges River Basin: status and challenges in water, environment and livelihoods. Oxon, UK: Routledge - Earthscan. pp.24-51. (Earthscan Series on Major River Basins of the World)
Groundwater management ; Water resources ; Groundwater table ; Water levels ; Groundwater extraction ; Groundwater irrigation ; Groundwater recharge ; Aquifers ; Water quality ; Groundwater pollution ; Arsenic ; Chemical contamination ; Tube wells ; Institutional development ; Water policy ; Resource management ; Regulations ; River basins ; Hydrogeology ; Alluvial land ; Plains ; Sediment ; Deltas / Nepal / India / Bangladesh / Ganges River Basin / Himalayan Region / Gangetic Plains / Bhabher Belt / Terai Belt
(Location: IWMI HQ Call no: IWMI Record No: H047811)

5 Malakar, P.; Mukherjee, A.; Bhanja, S. N.; Ganguly, A. R.; Ray, R. K.; Zahid, A.; Sarkar, S.; Saha, D.; Chattopadhyay, S. 2021. Three decades of depth-dependent groundwater response to climate variability and human regime in the transboundary Indus-Ganges-Brahmaputra-Meghna mega river basin aquifers. Advances in Water Resources, 149:103856. [doi: https://doi.org/10.1016/j.advwatres.2021.103856]
Groundwater table ; Climate change ; River basins ; International waters ; Aquifers ; Groundwater recharge ; Water extraction ; Anthropogenic factors ; Water levels ; Wells ; Irrigation ; Precipitation / India / Bangladesh / Indus River Basin / Ganges River Basin / Brahmaputra River Basin / Meghna River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H050254)
https://vlibrary.iwmi.org/pdf/H050254.pdf
(3.12 MB)
Groundwater plays a major role in human adaptation and ecological sustainability against climate variability by providing global water and food security. In the Indus-Ganges-Brahmaputra-Meghna aquifers (IGBM), groundwater abstraction has been reported to be one of the primary contributors to groundwater storage variability. However, there is still a lack of understanding on the relative influence of climate and abstraction on groundwater. Data-guided statistical studies are reported to be crucial in understanding the human-natural complex system. Here, we attributed the long-term (1985–2015) impact of local-precipitation, global-climate cycles, and human influence on multi-depth groundwater levels (n=6753) in the IGBM using lag correlation analysis, wavelet coherence analysis, and regression-based dominance analysis. Our findings highlight the variable patterns of phase lags observed between multi-depth groundwater levels and precipitation depending on the different nature of climatic and anthropogenic drivers in different parts of the basin. We observed intuitive responses, i.e., rapid response in shallow groundwater and relatively delayed responses to the global climate patterns with increasing depth. However, in the most exploited areas, the hydrological processes governing the groundwater recharge are overwhelmed by unsustainable groundwater abstraction, thus decoupling the hydro-climatic continuum. Our results also suggest groundwater abstraction to be the dominant influence in most of the basin, particularly at the greater depth of the aquifer, thus highlighting the importance of understanding multi-depth groundwater dynamics for future groundwater management and policy interventions.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO