Your search found 9 records
1 Maheshwari, B.; Purohit, R.; Malano, H.; Singh, V. P.; Amerasinghe, Priyanie. (Eds.) 2014. The security of water, food, energy and liveability of cities: challenges and opportunities for peri-urban futures. Dordrecht, Netherlands: Springer. 489p. (Water Science and Technology Library Volume 71)
Water security ; Food security ; Food production ; Food supply ; Energy conservation ; Agriculture ; Periurban areas ; Urban areas ; Urbanization ; Rural areas ; Hydrological cycle ; Models ; Sustainable development ; Social aspects ; Water footprint ; Water supply ; Water use ; Water demand ; Water availability ; Catchment areas ; Solar energy ; Carbon cycle ; Sanitation ; Health hazards ; Malnutrition ; Milk production ; Decentralization ; Wastewater management ; Wastewater treatment ; Excreta ; Waste treatment ; Nutrients ; Horticulture ; Labour mobility ; Climate change ; Knowledge management ; Greenhouse gases ; Emission reduction ; Land use ; Biodiversity ; Case studies / India / Australia / Ghana / Iran / West Africa / Ethiopia / Uganda / Africa South of Sahara / Senegal / Bangladesh / Melbourne / Tamale / Shiraz / Sydney / Addis Ababa / Accra / Hyderabad / Kampala / Dakar / Dhaka / Udaipur / Bharatpur / Tigray Region / Rajasthan / Rajsamand District / South Creek Catchment
(Location: IWMI HQ Call no: IWMI, e-copy SF Record No: H046685)
http://vlibrary.iwmi.org/pdf/H046685_TOC.pdf
(10.11 MB)

2 Malano, H.; Maheshwari, B.; Singh, V. P.; Purohit, R.; Amerasinghe, Priyanie. 2014. Challenges and opportunities for peri-urban futures. In Maheshwari, B.; Purohit, R.; Malano, H.; Singh, V. P.; Amerasinghe, Priyanie. (Eds.). The security of water, food, energy and liveability of cities: challenges and opportunities for peri-urban futures. Dordrecht, Netherlands: Springer. pp.3-10. (Water Science and Technology Library Volume 71)
Periurban areas ; Urbanization ; Population growth ; Land use ; Water resources ; Sustainability
(Location: IWMI HQ Call no: IWMI Record No: H046686)
https://vlibrary.iwmi.org/pdf/H046686.pdf
(2.44 MB)

3 Maheshwari, B.; Varua, M.; Ward, J.; Packham, R.; Chinnasamy, Pennan; Dashora, Y.; Dave, S.; Soni, P.; Dillon, P.; Purohit, R.; Hakimuddin; Shah, Tushaar; Oza, S.; Singh, P.; Prathapar, Sanmugam; Patel, A.; Jadeja, Y.; Thaker, B.; Kookana, R.; Grewal, H.; Yadav, K.; Mittal, H.; Chew, M.; Rao, P. 2014. The role of transdisciplinary approach and community participation in village scale groundwater management: insights from Gujarat and Rajasthan, India. Water, 6(11):3386-3408. [doi: https://doi.org/10.3390/w6113386]
Community involvement ; Groundwater management ; Groundwater recharge ; Water table ; Water use ; Sustainability ; Watersheds ; Rain ; Villages ; Farmers ; Households ; Living standards ; Socioeconomic environment ; Gender / India / Gujarat / Rajasthan / Meghraj watershed / Dharta watershed
(Location: IWMI HQ Call no: e-copy only Record No: H046716)
http://www.mdpi.com/2073-4441/6/11/3386/pdf
https://vlibrary.iwmi.org/pdf/H046716.pdf
(1.38 MB) (1.39 MB)
Sustainable use of groundwater is becoming critical in India and requires effective participation from local communities along with technical, social, economic, policy and political inputs. Access to groundwater for farming communities is also an emotional and complex issue as their livelihood and survival depends on it. In this article, we report on transdisciplinary approaches to understanding the issues, challenges and options for improving sustainability of groundwater use in States of Gujarat and Rajasthan, India. In this project, called Managed Aquifer Recharge through Village level Intervention (MARVI), the research is focused on developing a suitable participatory approach and methodology with associated tools that will assist in improving supply and demand management of groundwater. The study was conducted in the Meghraj watershed in Aravalli district, Gujarat, and the Dharta watershed in Udaipur district, Rajasthan, India. The study involved the collection of hydrologic, agronomic and socio-economic data and engagement of local village and school communities through their role in groundwater monitoring, field trials, photovoice activities and education campaigns. The study revealed that availability of relevant and reliable data related to the various aspects of groundwater and developing trust and support between local communities, NGOs and government agencies are the key to moving towards a dialogue to decide on what to do to achieve sustainable use of groundwater. The analysis of long-term water table data indicated considerable fluctuation in groundwater levels from year to year or a net lowering of the water table, but the levels tend to recover during wet years. This provides hope that by improving management of recharge structures and groundwater pumping, we can assist in stabilizing the local water table. Our interventions through Bhujal Jankaars (BJs), (a Hindi word meaning “groundwater informed” volunteers), schools, photovoice workshops and newsletters have resulted in dialogue within the communities about the seriousness of the groundwater issue and ways to explore options for situation improvement. The BJs are now trained to understand how local recharge and discharge patterns are influenced by local rainfall patterns and pumping patterns and they are now becoming local champions of groundwater and an important link between farmers and project team. This study has further strengthened the belief that traditional research approaches to improve the groundwater situation are unlikely to be suitable for complex groundwater issues in the study areas. The experience from the study indicates that a transdisciplinary approach is likely to be more effective in enabling farmers, other village community members and NGOs to work together with researchers and government agencies to understand the groundwater situation and design interventions that are holistic and have wider ownership. Also, such an approach is expected to deliver longer-term sustainability of groundwater at a regional level.

4 Purohit, R.; Shrimali, S. K. 2014. Urbanisation of peri-urban regions: is it a boon or threat to the liveability of future cities in India? In Maheshwari, B.; Purohit, R.; Malano, H.; Singh, V. P.; Amerasinghe, Priyanie. (Eds.). The security of water, food, energy and liveability of cities: challenges and opportunities for peri-urban futures. Dordrecht, Netherlands: Springer. pp.41-53. (Water Science and Technology Library Volume 71)
Urbanization ; Periurban areas ; Population growth ; Sustainable development ; Urban planning ; Policy ; Urban agriculture ; Urban forestry ; Land use ; Rural urban migration ; State intervention ; Environmental effects ; Governance / India / Rajasthan
(Location: IWMI HQ Call no: IWMI Record No: H047019)
Populations of cities are increasing rapidly and people from nearby rural areas have been migrating to cities at unprecedented rates during the last 15–20 years. Is it a problem? Why is there so much hue and cry regarding this issue? Are we really going to face the problem of water supplies, food shortages and liveability of cities in the future? To reflect on these issues we will have to think of the Liveability Index. Are our cities lagging behind on liveability standards? What is the understanding of policy makers? Do policy makers have a generic grasp into the state of cities? What roadmaps are being evolved to excel global standards? This paper addresses the issues of sustainable development in landscapes around our cities, particularly in light of utilizing present resources, while keeping in mind the future needs of society, so as not to exhaust resources. Further, it should not disturb the ecological cycle and hence preserve the environment and liveability of future cities. Using City of Lakes, Udaipur, as an example the paper will also discuss what options we have to meet the future demands of housing around our cities while meeting water needs and production of local fresh food and vegetables for the community.

5 Jadeja, Y.; Maheshwari, B.; Packham, R.; Hakimuddin; Purohit, R.; Thaker, B.; Goradiya, V.; Oza, S.; Dave, S.; Soni, P.; Dashora, Y.; Dashora, R.; Shah, Tushaar; Gorsiya, J.; Katara, P.; Ward, J.; Kookana, R.; Dillon, P.; Prathapar, Sanmugam; Chinnasamy, Pennan; Varua, M. 2015. Participatory groundwater management at village level in India – empowering communities with science for effective decision making. Paper Presented at the Australian Groundwater Conference 2015, Canberra, Australia, 3-5 November 2015. 20p.
Participatory approaches ; Groundwater management ; Water resources ; Watersheds ; Rural communities ; Villages ; Empowerment ; Decision making ; Drinking water ; Capacity building ; Hydrogeology ; Training ; Land resources ; Stakeholders ; Mapping / India / Gujarat / Rajasthan
(Location: IWMI HQ Call no: e-copy only Record No: H047332)
https://vlibrary.iwmi.org/pdf/H047332.pdf
(0.68 MB)
There are many reasons behind the worsening groundwater situation that have led to a scarcity of quality water supply for sustaining lives and livelihoods in India, as well as in other parts of the world. The lack of a proper scientific understanding of this situation by the various stakeholders has been identified as one of the important gaps in the sustainable management of groundwater. This paper shares experiences from Gujarat and Rajasthan in western India where scientists, NGOs, government agencies and village leaders have worked together to explore strategies for sustainable groundwater management. The study involved a total of eleven villages in Gujarat and Rajasthan, India. The study’s main aim was to educate these communities through an intensive capacity building of (mainly) rural youth, called Bhujal Jaankars (BJs), a Hindi word meaning ‘groundwater informed’. The BJs were trained in their local settings through relevant theory and practical exercises, so that they could perform a geo-hydrological evaluation of their area, monitor groundwater and share their findings and experiences with their village community. The BJs went through a training program of a series of sessions totalling 45-days that covered mapping, land and water resource analysis, geo-hydrology, and water balance analysis, and finally groundwater management strategies. This approach has highlighted important learning that can be replicated in other parts of the two states and beyond. There are now 35 trained BJs who regularly monitor groundwater and rainfall in the two study watersheds, and provide data to both scientific and their own rural communities. This study has demonstrated that BJ capacity building has helped to provide a scientific basis for village level groundwater dialogue. This is now leading the communities and other stakeholders to improve their decision making regarding groundwater use, crop selection, agronomy, recharge strategies and other aspects of sustainable groundwater management. Although the BJ program has been successful and BJs can act as a valuable interface between local communities and other stakeholders, there still exists some challenges to the BJ programme, such as the need for mechanisms and funding sources that will sustain the BJs over the longer term; wider acceptance of BJs among scientific communities and policy makers; and the acceptance of the role and involvements of BJs in natural resources management programs of the State and Central governments in India.

6 Varua, M. E.; Ward, J.; Maheshwari, B.; Ozac, S.; Purohit, R.; Hakimuddin; Chinnasamy, Pennan. 2016. Assisting community management of groundwater: irrigator attitudes in two watersheds in Rajasthan and Gujarat, India. Journal of Hydrology, 537:171-186. [doi: https://doi.org/10.1016/j.jhydrol.2016.02.003]
Community management ; Groundwater management ; Groundwater recharge ; Water use ; Watershed management ; Water availability ; Water use ; Living standards ; Aquifers ; Irrigation ; Sustainability ; Institutions ; Farming systems ; Farmers ; Households ; Income ; Poverty ; Agriculture ; Land ownership / India / Rajasthan / Gujarat / Meghraj Watershed / Dharta Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H047490)
http://publications.iwmi.org/pdf/H047490.pdf
https://vlibrary.iwmi.org/pdf/H047490.pdf
(1.82 MB)
The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

7 Ward, J.; Varua, M. E.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Dave, S. 2016. Exploring the relationship between subjective wellbeing and groundwater attitudes and practices of farmers in rural India. Journal of Hydrology, 540:1-16. [doi: https://doi.org/10.1016/j.jhydrol.2016.05.037]
Groundwater management ; Farmers attitudes ; Living standards ; Social welfare ; Watersheds ; Irrigation practices ; Aquifers ; Recharge ; Community organizations ; Rural areas ; Villages ; Households ; Human behaviour ; Participatory approaches ; Statistical methods / India / Gujarat / Rajasthan / Meghraj Watershed / Dharta Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H047716)
https://vlibrary.iwmi.org/pdf/H047716.pdf
(1.85 MB)
Failure to effectively coordinate opportunistic extractions by individual well owners with groundwater recharge has led to increasing Indian groundwater scarcity, affecting future opportunities for improved rural livelihoods and household wellbeing. Investigation of the relationship between groundwater institutions, management attitudes and subjective wellbeing of Indian rural households has substantial potential to reveal initiatives that jointly improve aquifer sustainability and household wellbeing, yet has received limited attention. Subjective wellbeing was calculated as an index of dissatisfaction (IDS), revealing ranked importance and the level of dissatisfaction of individual factors selected from economic, environmental and social/relational wellbeing dimensions. High economic and environmental IDS scores were calculated for respondents in the Meghraj and Dharta watersheds, India, respectively. We tested an exploratory hypothesis that observed IDS differences were correlated with differences in life circumstances, (household attributes, income and assets) and psychological disposition (life guiding values and willingness to adapt). The distribution of ranked IDS wellbeing scores was estimated across four statistically distinct clusters reflecting attitudes towards sustainable groundwater management and practice. Decision tree analysis identified significantly different correlates of overall wellbeing specific to cluster membership and the watershed, supporting the research hypothesis. High income IDS scores were weakly correlated with actual total household income (r < 0.25) consistent with international studies. The results suggest a singular reliance on initiatives to improve household income is unlikely to manifest as improved individual subjective wellbeing for the Dharta and Meghraj watersheds. In conclusion, correlates were tabulated into a systematic decision framework to assist the design of participatory processes at the village level, by targeting specific factors likely to jointly improve aquifer sustainability and household wellbeing.

8 Chinnasamy, Pennan; Maheshwari, B.; Dillon, P.; Purohit, R.; Dashora, Y.; Soni, P.; Dashora, R. 2018. Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India. Agricultural Water Management, 202:146-155. [doi: https://doi.org/10.1016/j.agwat.2018.02.016]
Water table ; Water balance ; Water use ; Water storage ; Water levels ; Irrigation water ; Groundwater management ; Groundwater extraction ; Aquifers ; Crop production ; Farmland ; Land use ; Semiarid zones ; Monitoring ; Wells / India / Rajasthan / Dharta
(Location: IWMI HQ Call no: e-copy only Record No: H048615)
https://vlibrary.iwmi.org/pdf/H048615.pdf
Assessment of specific yields is important for effective groundwater management in semi-arid hardrock aquifers, especially in India with its unsustainable groundwater usage rates. The Dharta watershed in the Udaipur district of Rajasthan is one such hardrock area in India where the groundwater extraction rate is a concern. In this study, we use groundwater balance analysis to estimate the specific yield (Sy) based on crop irrigation water use and changes in water table depths, during the irrigation season, to develop an understanding of the volume of groundwater recharge from pre and post monsoon water table depths and an understanding of the spatial and temporal changes in estimates of specific yield in the study area. The analysis used here estimates values at village scale (average area 3.65 km2) and is a technique compatible with the farmers monitoring of groundwater levels to facilitate local cooperative groundwater management. Five villages in the Dharta watershed in Rajasthan were selected and 50 wells per village were monitored for water table depth, at weekly intervals, over a two-year period. This resulted in a total of 250 wells in the study area and the monitoring was carried out by local farmer volunteers - called Bhujal Jankaars (BJs), a Hindi word meaning ‘groundwater informed.’ Crop area coverage (with a total of 40 crops) was examined for two years in the study area. Estimates of Sy in the five villages were between 1.4 and 8%, resulting in values comparable with previous studies. The watershed area-weighted average Sy was 3.8%. The method used in this study enabled estimates of recharge without needing a calibrated groundwater model in an area with sparse information on aquifer hydraulic characteristics and unreliable digital elevation maps.

9 Jadeja, J.; Maheshwari, B.; Packham, R.; Bohra, H.; Purohit, R.; Thaker, B.; Dillon, P.; Oza, S.; Dave, S.; Soni, P.; Dashora, Y.; Dashora, R.; Shah, Tushaar [IWMI]; Gorsiya, J.; Katara, P.; Ward, J.; Kookana, R.; Singh, P. K.; Chinnasamy, Pennan; Goradiya, V.; Prathapar, Sanmugam; Varua, M.; Chew, M. 2018. Managing aquifer recharge and sustaining groundwater use: developing a capacity building program for creating local groundwater champions. Sustainable Water Resources Management, 4(2):317-329. [doi: https://doi.org/10.1007/s40899-018-0228-6]
Groundwater management ; Groundwater extraction ; Groundwater recharge ; Groundwater development ; Water use ; Water quality ; Water availability ; Water resources ; Water management ; Water levels ; Aquifers ; Monitoring ; Capacity building ; Sustainability ; Training ; Villages ; Rural communities ; Stakeholders ; Farmers ; Participatory approaches ; Cooperatives / India
(Location: IWMI HQ Call no: e-copy only Record No: H048906)
https://vlibrary.iwmi.org/pdf/H048906.pdf
Participatory groundwater management is increasingly being recognised for its ability to address the challenges of equity, efficiency and sustainability. It can particularly help with effective engagement at the grassroots level for monitoring, recharging and managing the groundwater as a common pool resource. The main aim of this article is to discuss the training and management process used and the lessons learnt from a participatory groundwater management project, titled Managing Aquifer Recharge and Sustainable Groundwater Use through Village-level Intervention (MARVI). In this project, researchers, rural development facilitators and local villagers worked together to initiate participatory groundwater monitoring in 11 villages from the Dharta and Meghraj watersheds in Rajasthan and Gujarat, India. The study involved educating villagers through an intensive program of capacity building, wherein the villagers who participated in the program were called Bhujal Jaankars (BJs), a Hindi word meaning ‘groundwater informed’. The BJs were trained in their local settings through relevant theory and practical exercises, so that they could perform a geo-hydrological evaluation of their area, monitor groundwater and share their findings and experiences with their village community. The study has highlighted that with a well-designed program of capacity building and on-going support through training and nurturing, BJs can play an important role in monitoring watertable depth and other data for estimating groundwater recharge, leading to a sharing of the groundwater information with the local village community to influence the sustainable use of groundwater. Overall they can act as local champions for groundwater futures. Further, this study has demonstrated that BJ capacity building can help to provide a scientific basis for village level groundwater dialogue and assist village communities and other stakeholders to improve their decision making regarding groundwater use, crop selection, agronomy, recharge strategies and other aspects of sustainable groundwater management. Although the BJ program has been successful and BJs can act as a valuable interface between local communities and other stakeholders managed aquifer recharge activities, there still exists some challenges to the BJ programme, such as the need for mechanisms and funding sources that will sustain the BJs over the longer term; wider acceptance of BJs among scientific communities and policy makers; and the acceptance of the role and involvements of BJs in natural resources management programs of the State and Central governments in India.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO