Your search found 2 records
1 Worqlul, A. W.; Jeong, J.; Dile, Y. T.; Osorio, J.; Schmitter, Petra; Gerik, T.; Srinivasan, R.; Clark, N. 2017. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Applied Geography, 85:1-13. [doi: https://doi.org/10.1016/j.apgeog.2017.05.010]
Surface irrigation ; Groundwater recharge ; Groundwater irrigation ; Water storage ; Geographical information systems ; Land suitability ; Land use ; Irrigated land ; Agroindustry ; Soil texture ; Slopes ; Rain ; Evapotranspiration ; Water requirements ; Water resources ; Water availability ; River basins ; Population density ; Mapping ; Farmer-led irrigation ; Crops / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H048151)
http://www.sciencedirect.com/science/article/pii/S0143622816306269/pdfft?md5=d81ce4d77a5a37854e1918796d7b3995&pid=1-s2.0-S0143622816306269-main.pdf
https://vlibrary.iwmi.org/pdf/H048151.pdf
(5.35 MB)
Although Ethiopia has abundant land for irrigation, only a fraction of its potential land is being utilized. This study evaluates suitability of lands for irrigation using groundwater in Ethiopia using GIS-based Multi-Criteria Evaluation (MCE) techniques in order to enhance the country's agricultural industry. Key factors that significantly affect irrigation suitability evaluated in this study include physical land features (land use, soil, and slope), climate (rainfall and evapotranspiration), and market access (proximity to roads and access to market). These factors were weighted using a pair-wise comparison matrix, then reclassified and overlaid to identify suitable areas for groundwater irrigation using a 1-km grid. Groundwater data from the British Geological Survey were used to estimate the groundwater potential, which indicates the corresponding irrigation potential for major crops. Results indicated that more than 6 million ha of land are suitable for irrigation in Ethiopia. A large portion of the irrigable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins. These basins have access to shallow groundwater (i.e., depth of groundwater less than 20 m from the surface) making it easier to extract. The comparison between available groundwater and total crop water requirements indicate that groundwater alone may not be sufficient to supply all suitable land. The study estimates that only 8% of the suitable land can be irrigated with the available shallow groundwater. However, groundwater is a viable option for supplementing surface water resources for irrigation in several basins in the country.

2 Worqlul, A. W.; Dile, Y. T.; Jeong, J.; Adimassu, Zenebe; Lefore, Nicole; Gerik, T.; Srinivasan, R.; Clarke, N. 2019. Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. Computers and Electronics in Agriculture, 157: 110-125. [doi: https://doi.org/10.1016/j.compag.2018.12.040]
Climate change ; Land suitability ; Land use ; Irrigation methods ; Surface irrigation ; Groundwater management ; Water resources ; Surface water ; GIS ; Slope ; Soils ; Socioeconomic environment ; Population density ; Rainfall ; Temperature ; Evapotranspiration / Ghana
(Location: IWMI HQ Call no: e-copy only Record No: H049052)
https://reader.elsevier.com/reader/sd/pii/S0168169918311426?token=D47C9342836EF05EF9C7A103181929ACB8DDE1F80AD6AF06C2A5B98E687E907761A212B911EFC4AC23D7985048ACB910
https://vlibrary.iwmi.org/pdf/H049052.pdf
(6.84 MB)
Estimating the potential land resources suitable for irrigation and evaluating the possible impact of climate change on land suitability is essential for planning a sustainable agricultural system. This study applied a GIS-based Multi-Criteria Evaluation (MCE) technique to evaluate the suitability of land for irrigation in Ghana for a baseline period (1990 to 2010) and future time horizons 2050s (2041 to 2060) and 2070s (2061 to 2080). Key factors considered to evaluate the suitability of the land for irrigation include biophysical features (such as climate, land use, soil, and slope) and socioeconomic factors (such as proximity to roads and population density). These factors were weighted using a pairwise comparison matrix then reclassified and overlaid on a 30 m grid to estimate the irrigation potential of the country. Groundwater data from the British Geological Survey (BGS) were superimposed onto the land suitability map layer to evaluate the irrigation potential and the accessibility of shallow groundwater with simple water lifting technologies. Downscaled and bias-corrected future climate data from HadGEM2-ES under Representative Concentration Pathways (RCP) 4.5 emission scenario were used to represent the future climate horizon. Due to climate change, on average, rainfall will increase by 15 mm and 20 mm from the baseline period in the 2050s and 2070s, respectively. The average temperature shows a consistent increase in the majority of Ghana and a higher rate of increase is expected in the 2070s. Consequently, the rising temperature will increase the potential evapotranspiration by 6.0% and 7.6% in the 2050s and 2070s, respectively. The suitability analysis indicates that approximately 9% of the country is suitable for surface irrigation under the baseline period. A large portion of the potential land is located in the southwestern part of the country. The potential suitable land has an average groundwater access of 12 m from the surface with an average borehole potential yield of 2.5 L/second, which makes it favorable for utilization of simple water lifting technologies. Due to climate change, 9.5% of the suitable land will become unfavorable for irrigation in 2050s, and it is expected to reach 17% in 2070s.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO