Your search found 3 records
1 Amoah, A. 2017. Demand for domestic water from an innovative borehole system in rural Ghana: stated and revealed preference approaches. Water Policy, 19(1):46-68. [doi: https://doi.org/10.2166/wp.2016.254]
Water supply ; Domestic water ; Drinking water ; Water demand ; Boreholes ; Economic value ; Rural areas ; Sustainable development ; Households ; Socioeconomic environment ; Regression analysis ; Contingent valuation ; Econometric models ; Pricing ; Willingness to pay ; Estimation / Ghana / Greater Accra Region
(Location: IWMI HQ Call no: e-copy only Record No: H048024)
https://vlibrary.iwmi.org/pdf/H048024.pdf
(0.23 MB)
This study investigates demand for domestic water supply from an innovative borehole system using the contingent valuation method (CVM). We further estimate demand for current service of domestic water supply in residences using the hedonic pricing method (HPM). This is achieved through a survey from rural districts of the Greater Accra Region, Ghana. Interval regression and ordinary least squares (OLS) are applied to investigate the determinants of willingness-to-pay (WTP). We find that monthly WTP values are GH¢35.90 (US$11.45) and GH¢17.59 (US$5.61) in the CVM and HPM, respectively. These values constitute approximately 3–6% of household monthly income which is consistent with earlier studies. For policy purposes, the study recommends the adoption of this cost effective technology to help ease the water burden on society.

2 Nikiema, Josiane; Impraim, Robert; Cofie, Olufunke; Nartey, Eric; Jayathilake, Nilanthi; Thiel, Felix; Drechsel, Pay. 2020. Training manual for fecal sludge-based compost production and application. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 63p. (Resource Recovery and Reuse Series 15) [doi: https://doi.org/10.5337/2020.200]
Resource recovery ; Resource management ; Reuse ; Waste management ; Waste treatment ; Faecal sludge ; Composting ; Organic fertilizers ; Training materials ; Manuals ; Guidelines ; Best practices ; Organic wastes ; Solid wastes ; Liquid wastes ; Urban wastes ; Feedstocks ; Sludge dewatering ; Aerobic treatment ; Decomposition ; Enrichment ; Pelleting ; Product quality ; Monitoring ; Equipment ; Maintenance ; Safety at work ; Protective clothing ; Health hazards ; Pathogens ; Environmental effects ; Fertilizer technology ; Fertilizer application ; Plant nutrition ; Nitrogen ; Carbon ; Product certification / Ghana / Sri Lanka / Greater Accra Region
(Location: IWMI HQ Call no: IWMI Record No: H049476)
http://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_15.pdf
(1.96 MB)
Over the last decade, the International Water Management Institute (IWMI) has explored the use of fecal sludge (FS) in combination with other organic waste sources to optimize FS treatment and composting for the production of a safe organic fertilizer, which can – depending on demand – be enriched with crop nutrients or pelletized for volume reduction, delayed decomposition or easier application. Based on IWMI’s experience, this training manual has been compiled for plant managers and trainers to help ensure that staff involved in FS treatment and production, and application of an FS-based co-compost adopt best practices in all processes involved. The manual can be adapted to local needs as required. It also includes information on compost registration and certification, as well as guidelines for co-compost application in the field.

3 Siabi, E. K.; Awafo, E. A.; Kabo-bah, A. T.; Derkyi, N. S. A.; Akpoti, Komlavi; Mortey, E. M.; Yazdanie, M. 2023. Assessment of Shared Socioeconomic Pathway (SSP) climate scenarios and its impacts on the Greater Accra Region. Urban Climate, 49:101432. [doi: https://doi.org/10.1016/j.uclim.2023.101432]
Climate change ; Socioeconomic impact ; Assessment ; Urban areas ; Climate prediction ; Trends ; Climate models ; Precipitation ; Temperature ; Policies ; Sustainable Development Goals ; Goal 11 Sustainable Cities and Communities ; Goal 13 Climate action / Ghana / Greater Accra Region
(Location: IWMI HQ Call no: e-copy only Record No: H052016)
https://www.sciencedirect.com/science/article/pii/S2212095523000263/pdfft?md5=45ee630daa87c98c763c15711963ba8c&pid=1-s2.0-S2212095523000263-main.pdf
https://vlibrary.iwmi.org/pdf/H052016.pdf
(22.40 MB) (22.4 MB)
The effects of climate change (CC) have intensified in Ghana, especially in the Greater Accra region over the last two decades. CC assessment under the new IPCC scenarios and consistent local station data is limited. Consequently, CC assessment is becoming difficult in data-scarce regions in Ghana. This study utilizes six different Regional Climate Models under the 6th IPCC Report’s Shared Socioeconomic Pathway scenarios (SSPs) of the CMIP6, which were bias-corrected with CMhyd over Greater Accra using ground station and PUGMF reanalysis data. The study reveals a reduction and potential shift in the intensity of precipitation in the region under the SSPs. Maximum temperature is expected to increase by 0.81–1.45 C, 0.84–1.54 C, 0.96–1.70 C and 0.98–1.73 C, while minimum temperature would likely increase by 1.33–2.02 C, 1.49–2.22 C, 1.71–4.75 C and 1.75–4.83 C under SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5 scenarios, respectively. Thus, temperature will likely increase, especially at night in the near future. Rising temperatures and changes in precipitation have impacts on all strata of society, from agricultural production to power generation and beyond. These findings can help inform Ghanaian policymaking on Sustainable Development Goals 11 and 13 as well as nationally determined contributions within the Paris Agreement.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO