Your search found 2 records
1 Gautam, S. K.; Maharana, C.; Sharma, D.; Singh, A. K.; Tripathi, J. K.; Singh, S. K. 2015. Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha River Basin, Jharkhand State, India. Sustainability of Water Quality and Ecology, 6:57-74. [doi: https://doi.org/10.1016/j.swaqe.2015.06.001]
Groundwater ; Water quality ; Assessment ; Irrigation water ; Drinking water ; Water pollution ; Heavy metals ; Contamination ; Alkaline earth metals ; Sodium ; Magnesium ; Ions ; Salinity ; Chemicophysical properties ; Permeability ; Spatial variation ; Monsoon climate ; Hydrogeology ; Geochemistry ; River basins / India / Jharkhand / Chotanagpur Plateau / Subarnarekha River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H047960)
https://vlibrary.iwmi.org/pdf/H047960.pdf
(3.16 MB)
Suitability study of groundwater for domestic and irrigation purposes was carried out in the middle Subarnarekha river basin, Jharkhand. Collected samples were analysed for physicochemical parameters such as conductivity, total dissolved solids (TDS), pH, and heavy metals. After the physicochemical analysis groundwater samples were categorised for simplicity, accordingly, it shows that 52.6% samples fall in Ca-Cl2, 33.3% in Ca-HCO3, 10.5% in Ca-SO4, and 1.7% samples in Mg-HCO3 and rest were Na-Cl type. Interpretation of hydro-geochemical data suggests that leaching of ions followed by weathering and anthropogenic impact (mainly mining and agricultural activities) control the chemistry of groundwater in the study area. The TDS concentration at Govindpur site varies from 2677 mg L1 in the pre-monsoon to 2545 mg L1 in the post-monsoon season that is higher than the BIS (2004-05) maximum permissible limit (2000 mg L1 ). The elevated concentration of NO3 was identified at Govindpur, Hatia Bridge, Kandra, Musabani, Saraikela, Mango and Tatanagar. The higher NO3 concentration was due to the action of leaching and anthropogenic activities. At most of sampling locations, the concentration of Cd, Pb, and Ni were found higher than the prescribed limits defined by BIS and WHO. Groundwater suitability for drinking purpose was also evaluated by the synthetic pollution index (SPI), it suggests that 74%, 95%, and 21% samples fall in seriously polluted category during pre-monsoon, monsoon, and post-monsoon season, respectively. The calculated values of SAR, Na%, RSC, PI, and MH have shown that except at few locations, most of groundwater samples are suitable for irrigation purposes.

2 Muller, K.; Cornel, P. 2017. Setting water quality criteria for agricultural water reuse purposes. Journal of Water Reuse and Desalination, 7(2):121-135. [doi: https://doi.org/10.2166/wrd.2016.194]
Water quality ; Agriculture ; Water reuse ; Irrigation water ; Water storage ; Wastewater treatment ; Guidelines ; Standards ; Sanitation ; Projects ; Monitoring ; Chemicophysical properties ; Pollutant load ; Metallic elements ; Alkali metals ; Alkaline earth metals ; Heavy metals ; Nonmetals ; Boron ; Biological properties / Namibia / Outapi
(Location: IWMI HQ Call no: e-copy only Record No: H048068)
http://jwrd.iwaponline.com/content/7/2/121.full.pdf
https://vlibrary.iwmi.org/pdf/H048068.pdf
(0.37 MB) (376 KB)
The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO