Your search found 2 records
1 Clarke, N.; Bizimana, J.-C.; Dile, Y.; Worqlul, A.; Osorio, J.; Herbst, B.; Richardson, J. W.; Srinivasan, R.; Gerik, T. J.; Williams, J.; Jones, C. A.; Jeong, J. 2017. Evaluation of new farming technologies in Ethiopia using the Integrated Decision Support System (IDSS). Agricultural Water Management, 180(Part B):267-279. (Special issue: Agricultural Water and Nonpoint Source Pollution Management at a Watershed Scale Part II Overseen by: Dr. Brent Clothier). [doi: https://doi.org/10.1016/j.agwat.2016.07.023]
Farming systems ; Decision support systems ; Technological changes ; Evaluation ; Water management ; Small scale systems ; Models ; Nutrition ; Energy consumption ; Cropping systems ; Farm income ; Socioeconomic environment ; Watersheds ; Environmental sustainability ; Villages / Ethiopia / Amhara Region / Fogera Woreda / Weg-Arba Amba Kebele / Shena Kebele / Lake Tana
(Location: IWMI HQ Call no: e-copy only Record No: H047957)
http://www.sciencedirect.com/science/article/pii/S0378377416302694/pdfft?md5=7548f347c9ff8e0db60dca03902b7abe&pid=1-s2.0-S0378377416302694-main.pdf
https://vlibrary.iwmi.org/pdf/H047957.pdf
(3.19 MB) (3.19 MB)
This study investigates multi-dimensional impacts of adopting new technology in agriculture at the farm/village and watershed scale in sub-Saharan Africa using the Integrated Decision Support System (IDSS). Application of IDSS as an integrated modeling tool helps solve complex issues in agricultural systems by simultaneously assessing production, environmental, economic, and nutritional consequences of adopting agricultural technologies for sustainable increases in food production and use of scarce natural resources. The IDSS approach was applied to the Amhara region of Ethiopia, where the scarcity of resources and agro-environmental consequences are critical to agricultural productivity of small farm, to analyze the impacts of alternative agricultural technology interventions. Results show significant improvements in family income and nutrition, achieved through the adoption of irrigation technologies, proper use of fertilizer, and improved seed varieties while preserving environmental indicators in terms of soil erosion and sediment loadings. These pilot studies demonstrate the usefulness of the IDSS approach as a tool that can be used to predict and evaluate the economic and environmental consequences of adopting new agricultural technologies that aim to improve the livelihoods of subsistence farmers.

2 Worqlul, A. W.; Dile, Y. T.; Schmitter, Petra; Jeong, J.; Meki, M. N.; Gerik, T. J.; Srinivasan, R.; Lefore, Nicole; Clarke, N. 2019. Water resource assessment, gaps, and constraints of vegetable production in Robit and Dangishta watersheds, Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, 226:105767. [doi: https://doi.org/10.1016/j.agwat.2019.105767]
Water resources ; Assessment ; Agricultural production ; Vegetables ; Crop yield ; Tomatoes ; Onions ; Irrigation water ; Rain ; Groundwater recharge ; Watersheds ; Water use efficiency ; Fertilizer application ; Farmers ; Farmer-led irrigation ; Models / Ethiopia / Upper Blue Nile Basin / Robit Watershed / Dangishta Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H049376)
https://www.sciencedirect.com/science/article/pii/S0378377418314021/pdfft?md5=769bfc34b80853a9a6b06c0b86106dda&pid=1-s2.0-S0378377418314021-main.pdf
https://vlibrary.iwmi.org/pdf/H049376.pdf
(2.00 MB) (2.00 MB)
The vast majority of farmers in sub-Saharan Africa depend on rainfed agriculture for food production and livelihood. Various factors including but not limited to rainfall variability, land degradation, and low soil fertility constrain agricultural productivity in the region. The objectives of this study were to 1) estimate the water resources potential to sustain small-scale irrigation (SSI) in Ethiopia during the dry season so as to expand food supply by growing vegetables, and 2) understand the gaps and constraints of vegetable production. The case studies were conducted in the Robit and Dangishta watersheds of the Upper Blue Nile Basin, Ethiopia. To document farmers’ cropping practices, field-level data were collected from 36 households who had been cultivating tomato (Solanum lycopersicum L.) and onion (Allium cepa L.) during the dry season (November – April). Two components of the Integrated Decision Support System (IDSS) - the Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) – were respectively used to assess impacts of SSI at the watershed and field-scale levels. Results suggest that there is a substantial amount of surface runoff and shallow groundwater recharge at the watershed scale. The field-scale analysis in the Robit watershed indicated that optimal tomato yield could be obtained with 500 mm of water and 200 to 250 kg/ha of urea applied with 50 kg/ ha of diammonium phosphate (DAP). In Dangishta, optimum onion yield can be obtained with 400 mm of water and 120 to 180 kg/ha of urea applied with 50 kg/ha of DAP. The field-scale simulation indicated that the average shallow groundwater recharge (after accounting for other groundwater users such as household and livestock use) was not sufficient to meet tomato and onion water demand in the dry season (October to April). The fieldscale analysis also indicated that soil evaporation attributed a significant proportion of evapotranspiration (60% for onion and 40% for tomato). Use of mulching or other soil and water conservation interventions could optimize irrigation water for vegetable production by reducing soil evaporation and thereby increasing water availability in the crop root zone.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO