Your search found 14 records
1 Dile, Y. T.; Karlberg, L.; Daggupati, P.; Srinivasan, R.; Wiberg, D.; Rockstrom, J. 2016. Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: a case study in the Lake Tana basin. Science of The Total Environment, 542:22-35. [doi: https://doi.org/10.1016/j.scitotenv.2015.10.065]
Water harvesting ; Water requirements ; Water quality ; Water use ; Intensification ; Stream flow ; Upstream ; Downstream ; Ecosystem services ; Crop yield ; Supplemental irrigation ; Irrigation water ; Sediment ; Sustainable agriculture ; Intensification ; Ecology ; Decision support systems ; Ponds ; Watersheds ; Soils ; Assessment ; Nutrient availability ; Onions ; Food security ; Food production ; Economic aspects ; Case studies / Ethiopia / Africa South of Sahara / Lake Tana Basin
(Location: IWMI HQ Call no: e-copy only Record No: H047928)
https://vlibrary.iwmi.org/pdf/H047928.pdf
Water harvesting systems have improved productivity in various regions in sub-Saharan Africa. Similarly, they can help retain water in landscapes, build resilience against droughts and dry spells, and thereby contribute to sustainable agricultural intensification. However, there is no strong empirical evidence that shows the effects of intensification of water harvesting on upstream–downstream social–ecological systems at a landscape scale. In this paper we develop a decision support system (DSS) for locating and sizing water harvesting ponds in a hydrological model, which enables assessments of water harvesting intensification on upstream–downstream ecosystem services in meso-scale watersheds. The DSS was used with the Soil and Water Assessment Tool (SWAT) for a case-study area located in the Lake Tana basin, Ethiopia. We found that supplementary irrigation in combination with nutrient application increased simulated teff (Eragrostis tef, staple crop in Ethiopia) production up to three times, compared to the current practice. Moreover, after supplemental irrigation of teff, the excess water was used for dry season onion production of 7.66 t/ha (median). Water harvesting, therefore, can play an important role in increasing local- to regional-scale food security through increased and more stable food production and generation of extra income from the sale of cash crops. The annual total irrigation water consumption was ~ 4%–30% of the annual water yield from the entire watershed. In general, water harvesting resulted in a reduction in peak flows and an increase in low flows. Water harvesting substantially reduced sediment yield leaving the watershed. The beneficiaries of water harvesting ponds may benefit from increases in agricultural production. The downstream social–ecological systems may benefit from reduced food prices, reduced flooding damages, and reduced sediment influxes, as well as enhancements in low flows and water quality. The benefits of water harvesting warrant economic feasibility studies and detailed analyses of its ecological impacts.

2 Worqlul, A. W.; Jeong, J.; Dile, Y. T.; Osorio, J.; Schmitter, Petra; Gerik, T.; Srinivasan, R.; Clark, N. 2017. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Applied Geography, 85:1-13. [doi: https://doi.org/10.1016/j.apgeog.2017.05.010]
Surface irrigation ; Groundwater recharge ; Groundwater irrigation ; Water storage ; Geographical information systems ; Land suitability ; Land use ; Irrigated land ; Agroindustry ; Soil texture ; Slopes ; Rain ; Evapotranspiration ; Water requirements ; Water resources ; Water availability ; River basins ; Population density ; Mapping ; Farmer-led irrigation ; Crops / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H048151)
http://www.sciencedirect.com/science/article/pii/S0143622816306269/pdfft?md5=d81ce4d77a5a37854e1918796d7b3995&pid=1-s2.0-S0143622816306269-main.pdf
https://vlibrary.iwmi.org/pdf/H048151.pdf
(5.35 MB)
Although Ethiopia has abundant land for irrigation, only a fraction of its potential land is being utilized. This study evaluates suitability of lands for irrigation using groundwater in Ethiopia using GIS-based Multi-Criteria Evaluation (MCE) techniques in order to enhance the country's agricultural industry. Key factors that significantly affect irrigation suitability evaluated in this study include physical land features (land use, soil, and slope), climate (rainfall and evapotranspiration), and market access (proximity to roads and access to market). These factors were weighted using a pair-wise comparison matrix, then reclassified and overlaid to identify suitable areas for groundwater irrigation using a 1-km grid. Groundwater data from the British Geological Survey were used to estimate the groundwater potential, which indicates the corresponding irrigation potential for major crops. Results indicated that more than 6 million ha of land are suitable for irrigation in Ethiopia. A large portion of the irrigable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins. These basins have access to shallow groundwater (i.e., depth of groundwater less than 20 m from the surface) making it easier to extract. The comparison between available groundwater and total crop water requirements indicate that groundwater alone may not be sufficient to supply all suitable land. The study estimates that only 8% of the suitable land can be irrigated with the available shallow groundwater. However, groundwater is a viable option for supplementing surface water resources for irrigation in several basins in the country.

3 Dile, Y. T.; Tekleab, S.; Ayana, E. K.; Gebrehiwot, S. G.; Worqlul, A. W.; Bayabil, H. K.; Yimam, Y. T.; Tilahun, S. A.; Daggupati, P.; Karlberg, L.; Srinivasan, R. 2018. Advances in water resources research in the Upper Blue Nile Basin and the way forward: a review. Journal of Hydrology, 560:407-423. [doi: https://doi.org/10.1016/j.jhydrol.2018.03.042]
Water resources ; Research ; Water conservation ; Soil conservation ; Erosion ; Climate change ; Land use ; Catchment areas ; Water balance ; Hydrology ; Models ; Economic development ; Agriculture ; Remote sensing / Ethiopia / Upper Blue Nile Basin
(Location: IWMI HQ Call no: e-copy only Record No: H048798)
https://www.sciencedirect.com/science/article/pii/S0022169418302087/pdfft?md5=fd653f0a22b3bbc8ecfa4c346eb5cfc9&pid=1-s2.0-S0022169418302087-main.pdf
https://vlibrary.iwmi.org/pdf/H048798.pdf
(1.32 MB) (1.32 MB)
The Upper Blue Nile basin is considered as the lifeline for ~250 million people and contributes ~50 Gm3 / year of water to the Nile River. Poor land management practices in the Ethiopian highlands have caused a significant amount of soil erosion, thereby threatening the productivity of the Ethiopian agricultural system, degrading the health of the aquatic ecosystem, and shortening the life of downstream reservoirs. The Upper Blue Nile basin, because of limited research and availability of data, has been considered as the "great unknown." In the recent past, however, more research has been published. Nonetheless, there is no state-of-the-art review that presents research achievements, gaps and future directions. Hence, this paper aims to bridge this gap by reviewing the advances in water resources research in the basin while highlighting research needs and future directions. We report that there have been several research projects that try to understand the biogeochemical processes by collecting information on runoff, groundwater recharge, sediment transport, and tracers. Different types of hydrological models have been applied. Most of the earlier research used simple conceptual and statistical approaches for trend analysis and water balance estimations, mainly using rainfall and evapotranspiration data. More recent research has been using advanced semi-physically/physically based distributed hydrological models using high-resolution temporal and spatial data for diverse applications. We identified several research gaps and provided recommendations to address them. While we have witnessed advances in water resources research in the basin, we also foresee opportunities for further advancement. Incorporating the research findings into policy and practice will significantly benefit the development and transformation agenda of the Ethiopian government.

4 Worqlul, A. W.; Dile, Y. T.; Jeong, J.; Adimassu, Zenebe; Lefore, Nicole; Gerik, T.; Srinivasan, R.; Clarke, N. 2019. Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. Computers and Electronics in Agriculture, 157: 110-125. [doi: https://doi.org/10.1016/j.compag.2018.12.040]
Climate change ; Land suitability ; Land use ; Irrigation methods ; Surface irrigation ; Groundwater management ; Water resources ; Surface water ; GIS ; Slope ; Soils ; Socioeconomic environment ; Population density ; Rainfall ; Temperature ; Evapotranspiration / Ghana
(Location: IWMI HQ Call no: e-copy only Record No: H049052)
https://reader.elsevier.com/reader/sd/pii/S0168169918311426?token=D47C9342836EF05EF9C7A103181929ACB8DDE1F80AD6AF06C2A5B98E687E907761A212B911EFC4AC23D7985048ACB910
https://vlibrary.iwmi.org/pdf/H049052.pdf
(6.84 MB)
Estimating the potential land resources suitable for irrigation and evaluating the possible impact of climate change on land suitability is essential for planning a sustainable agricultural system. This study applied a GIS-based Multi-Criteria Evaluation (MCE) technique to evaluate the suitability of land for irrigation in Ghana for a baseline period (1990 to 2010) and future time horizons 2050s (2041 to 2060) and 2070s (2061 to 2080). Key factors considered to evaluate the suitability of the land for irrigation include biophysical features (such as climate, land use, soil, and slope) and socioeconomic factors (such as proximity to roads and population density). These factors were weighted using a pairwise comparison matrix then reclassified and overlaid on a 30 m grid to estimate the irrigation potential of the country. Groundwater data from the British Geological Survey (BGS) were superimposed onto the land suitability map layer to evaluate the irrigation potential and the accessibility of shallow groundwater with simple water lifting technologies. Downscaled and bias-corrected future climate data from HadGEM2-ES under Representative Concentration Pathways (RCP) 4.5 emission scenario were used to represent the future climate horizon. Due to climate change, on average, rainfall will increase by 15 mm and 20 mm from the baseline period in the 2050s and 2070s, respectively. The average temperature shows a consistent increase in the majority of Ghana and a higher rate of increase is expected in the 2070s. Consequently, the rising temperature will increase the potential evapotranspiration by 6.0% and 7.6% in the 2050s and 2070s, respectively. The suitability analysis indicates that approximately 9% of the country is suitable for surface irrigation under the baseline period. A large portion of the potential land is located in the southwestern part of the country. The potential suitable land has an average groundwater access of 12 m from the surface with an average borehole potential yield of 2.5 L/second, which makes it favorable for utilization of simple water lifting technologies. Due to climate change, 9.5% of the suitable land will become unfavorable for irrigation in 2050s, and it is expected to reach 17% in 2070s.

5 Worqlul, A. W.; Dile, Y. T.; Schmitter, Petra; Jeong, J.; Meki, M. N.; Gerik, T. J.; Srinivasan, R.; Lefore, Nicole; Clarke, N. 2019. Water resource assessment, gaps, and constraints of vegetable production in Robit and Dangishta watersheds, Upper Blue Nile Basin, Ethiopia. Agricultural Water Management, 226:105767. [doi: https://doi.org/10.1016/j.agwat.2019.105767]
Water resources ; Assessment ; Agricultural production ; Vegetables ; Crop yield ; Tomatoes ; Onions ; Irrigation water ; Rain ; Groundwater recharge ; Watersheds ; Water use efficiency ; Fertilizer application ; Farmers ; Farmer-led irrigation ; Models / Ethiopia / Upper Blue Nile Basin / Robit Watershed / Dangishta Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H049376)
https://www.sciencedirect.com/science/article/pii/S0378377418314021/pdfft?md5=769bfc34b80853a9a6b06c0b86106dda&pid=1-s2.0-S0378377418314021-main.pdf
https://vlibrary.iwmi.org/pdf/H049376.pdf
(2.00 MB) (2.00 MB)
The vast majority of farmers in sub-Saharan Africa depend on rainfed agriculture for food production and livelihood. Various factors including but not limited to rainfall variability, land degradation, and low soil fertility constrain agricultural productivity in the region. The objectives of this study were to 1) estimate the water resources potential to sustain small-scale irrigation (SSI) in Ethiopia during the dry season so as to expand food supply by growing vegetables, and 2) understand the gaps and constraints of vegetable production. The case studies were conducted in the Robit and Dangishta watersheds of the Upper Blue Nile Basin, Ethiopia. To document farmers’ cropping practices, field-level data were collected from 36 households who had been cultivating tomato (Solanum lycopersicum L.) and onion (Allium cepa L.) during the dry season (November – April). Two components of the Integrated Decision Support System (IDSS) - the Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) – were respectively used to assess impacts of SSI at the watershed and field-scale levels. Results suggest that there is a substantial amount of surface runoff and shallow groundwater recharge at the watershed scale. The field-scale analysis in the Robit watershed indicated that optimal tomato yield could be obtained with 500 mm of water and 200 to 250 kg/ha of urea applied with 50 kg/ ha of diammonium phosphate (DAP). In Dangishta, optimum onion yield can be obtained with 400 mm of water and 120 to 180 kg/ha of urea applied with 50 kg/ha of DAP. The field-scale simulation indicated that the average shallow groundwater recharge (after accounting for other groundwater users such as household and livestock use) was not sufficient to meet tomato and onion water demand in the dry season (October to April). The fieldscale analysis also indicated that soil evaporation attributed a significant proportion of evapotranspiration (60% for onion and 40% for tomato). Use of mulching or other soil and water conservation interventions could optimize irrigation water for vegetable production by reducing soil evaporation and thereby increasing water availability in the crop root zone.

6 Dile, Y. T.; Ayana, E. K.; Worqlul, A. W.; Xie, H.; Srinivasan, R.; Lefore, N.; You, L.; Clarke, N. 2020. Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: a case in Ethiopia. Science of the Total Environment, 743:140702. [doi: https://doi.org/10.1016/j.scitotenv.2020.140702]
Evapotranspiration ; Hydrology ; Agricultural landscape ; Satellite observation ; Remote sensing ; Water management ; Sustainability ; River basins ; Stream flow ; Land management ; Land use ; Soil moisture ; Grasslands ; Models ; Uncertainty ; Forests / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H049976)
https://www.sciencedirect.com/science/article/pii/S0048969720342248/pdfft?md5=33436fc788bb7601053c74729cab3e05&pid=1-s2.0-S0048969720342248-main.pdf
https://vlibrary.iwmi.org/pdf/H049976.pdf
(11.60 MB) (11.6 MB)
Water resource development opens up opportunities for improving smallholder farmer livelihoods in sub-Saharan Africa; however, implementation of water resource interventions to ensure sustainability hinges on the availability of sufficient quantity and quality data for monitoring, analysis and planning. Such data is often acquired through instrumentation of water resources (e.g. stream flow monitoring) or the use of hydrological models. In sub-Saharan Africa, data scarcity has limited the ability to monitor and make appropriate decisions for water resource allocation and use. Data derived from remote sensing has been considered a viable option to fill this gap; however, there is limited research in the region that evaluate the quality of the remotely sensed based datasets. This study evaluated actual evapotranspiration (AET) estimates derived from Advanced Very High Resolution Radiometer (AVHRR AET) images and Moderate Resolution Imaging Spectrometer (MOD16 AET) images using estimates from a grid-based Soil and Water Assessment Tool (SWAT). The SWAT model was set up for the entire country of Ethiopia, and calibrated and validated using observed streamflow at several meso-scale watersheds in which satisfactory model performance was obtained. AET estimates from the calibrated and validated SWAT model were then used to evaluate remotely sensed based AET for three landscapes. The AVHRR AET better agreed with the SWAT-simulated AET than the MOD16 AET, although the AVHRR AET overestimated the SWAT-simulated AET in all of the landscapes. Both remotely sensed AET products showed better agreement with the SWAT-simulated AET over agriculture dominated landscapes compared to grassland and forest dominated landscapes. The findings of the study suggest that remotely sensed based AET may help to fine-tune hydrological models in agricultural landscapes in data-scarce regions to improve studies on the impacts of water management interventions aiming to ensure environmental sustainability while enhancing agricultural production, and household income and nutrition.

7 Xie, H.; You, L.; Dile, Y. T.; Worqlul, A. W.; Bizimana, J.- C.; Srinivasan, R.; Richardson, J. W.; Thomas, G.; Neville, C. 2021. Mapping development potential of dry-season small-scale irrigation in Sub-Saharan African countries under joint biophysical and economic constraints - an agent-based modeling approach with an application to Ethiopia. Agricultural Systems, 186:102987. [doi: https://doi.org/10.1016/j.agsy.2020.102987]
Irrigation systems ; Small scale systems ; Dry season ; Agricultural development ; Water availability ; Irrigation water ; Water scarcity ; Environmental factors ; Economic aspects ; Crop yield ; Technology ; Geographical information systems ; Models ; Uncertainty / Africa South of Sahara / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H050097)
https://www.sciencedirect.com/science/article/pii/S0308521X20308489/pdfft?md5=ccefdf32598d6ea8bc5b61f1d012b437&pid=1-s2.0-S0308521X20308489-main.pdf
https://vlibrary.iwmi.org/pdf/H050097.pdf
(4.40 MB) (4.40 MB)
Sub-Saharan Africa has long been beset with food insecurity. Investment in small-scale irrigation may provide a solution to address the challenge by extending crop production into the dry season. We present an agent-based modeling system to assess the potential of dry-season small-irrigation development in Sub-Saharan Africa with an application to Ethiopia. We identify significant potential for investing in dry-season small-scale irrigation in Ethiopia and map geographic domains with highest investment opportunities.

8 Worqlul, A. W.; Dile, Y. T.; Schmitter, Petra; Bezabih, M.; Adie, A.; Bizimana, J.-C.; Srinivasan, R.; Lefore, N.; Clarke, N. 2021. Constraints of small-scale irrigated fodder production and nutrition assessment for livestock feed, a case study in Ethiopia. Agricultural Water Management, 254:106973. [doi: https://doi.org/10.1016/j.agwat.2021.106973]
Small scale farming ; Fodder ; Livestock feed ; Nutrition ; Assessment ; Irrigation ; Small scale systems ; Water use efficiency ; Fertilizer application ; Rain ; Runoff ; Groundwater ; Water stress ; Forage yield ; Pennisetum purpureum ; Lathyrus cicera ; Oats ; Farmers ; Watersheds / Africa South of Sahara / Ethiopia / Robit Watershed / Lemo Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H050449)
https://vlibrary.iwmi.org/pdf/H050449.pdf
(3.69 MB)
Livestock is an integral part of the agricultural system in sub-Saharan Africa, serving as a food source, income, fertilizer, and power for farming and transportation. However, the productivity of the livestock system has been hampered due to a lack of sufficient quantity and quality feed. This study evaluates the gaps and constraints of fodder and nutritional potential for livestock feed using small-scale irrigation (SSI). The study comprised of 30 randomly selected farmers from two different ecological zones in Ethiopia. Half of the farmers cultivated Napier grass (Pennisetum purpureum) in the Robit watershed in northern Ethiopia, and the other half cultivated mixed vetch (Lathyrus cicera) and oats (Avena sativa) in Lemo watershed in southern Ethiopia. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) were applied in an integrated manner to assess the impacts of SSI at the watershed and field-scale levels, respectively. The watershed-scale analysis showed that there is a substantial amount of surface runoff and shallow groundwater recharge that could be used for dry season fodder production using irrigation. Field data calibrated APEX model indicated that Napier yield could be maximized with 550 mm of water in Robit watershed. While in the Lemo watershed, maximum vetch and oats yield may be achieved with 250 mm of water. The major constraints for Napier and oats production in the study sites were soil fertility, especially nitrogen and phosphorus, and vetch production was limited by high temperature. Fodder samples were collected at the time of harvest to evaluate feed quality. The nutritional analysis indicated that Napier grass has a higher dry matter and ash (mineral) content compared to oats and vetch. However, vetch has higher crude protein content (18%) compared to Napier (10%) and oats (6%). Overall the study indicated that cultivating vetch provided superior performance in terms of providing quality feed and environmental services.

9 Siabi, E. K.; Dile, Y. T.; Kabo-Bah, A. T.; Amo-Boateng, M.; Anornu, G. K.; Akpoti, Komlavi; Vuu, C.; Donkor, P.; Mensah, S. K.; Incoom, A. B. M.; Opoku, E. K.; Atta-Darkwa, T. 2022. Machine learning based groundwater prediction in a data-scarce basin of Ghana. Applied Artificial Intelligence, 36(1):2138130. [doi: https://doi.org/10.1080/08839514.2022.2138130]
Groundwater recharge ; Forecasting ; Estimation ; Machine learning ; Neural networks ; Modelling ; Precipitation ; Evapotranspiration ; Surface runoff ; Climate change ; Rain ; Aquifers / Ghana / Volta Basin / Akuse / Ketekrachi / Tamale / Wenchi
(Location: IWMI HQ Call no: e-copy only Record No: H051547)
https://www.tandfonline.com/doi/pdf/10.1080/08839514.2022.2138130?needAccess=true
https://vlibrary.iwmi.org/pdf/H051547.pdf
(5.90 MB) (5.90 MB)
Groundwater (GW) is a key source of drinking water and irrigation to combat growing food insecurity and for improved water access in rural sub-Saharan Africa. However, there are limited studies due to data scarcity in the region. New modeling techniques such as Machine learning (ML) are found robust and promising tools to assess GW recharge with less expensive data. The study utilized ML technique in GW recharge prediction for selected locations to assess sustainability of GW resources in Ghana. Two artificial neural networks (ANN) models namely Feedforward Neural Network with Multilayer Perceptron (FNN-MLP) and Extreme Learning Machine (FNN-ELM) were used for the prediction of GW using 58 years (1960–2018) of GW data. Model evaluation between FNN-MLP and FNN-ELM showed that the former approach was better in predicting GW with R2 ranging from 0.97 to 0.99 while the latter has an R2 between 0.42 to 0.68. The overall performance of both models was acceptable and suggests that ANN is a useful forecasting tool for GW assessment. The outcomes from this study will add value to the current methods of GW assessment and development, which is one of the pillars of the sustainable development goals (SDG 6).

10 Wubaye, G. B.; Gashaw, T.; Worqlul, A. W.; Dile, Y. T.; Taye, Meron Teferi; Haileslassie, Amare; Zaitchik, B.; Birhan, D. A.; Adgo, E.; Mohammed, J. A.; Lebeza, T. M.; Bantider, A.; Seid, Abdulkarim; Srinivasan, R. 2023. Trends in rainfall and temperature extremes in Ethiopia: station and agro-ecological zone levels of analysis. Atmosphere, 14(3):483. (Special issue: Water Management and Crop Production in the Face of Climate Change) [doi: https://doi.org/10.3390/atmos14030483]
Extreme weather events ; Rainfall ; Temperature ; Trends ; Meteorological stations ; Agroecological zones ; Climate change adaptation ; Precipitation ; Spatial distribution ; Time series analysis / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H051768)
https://www.mdpi.com/2073-4433/14/3/483/pdf?version=1678174504
https://vlibrary.iwmi.org/pdf/H051768.pdf
(9.01 MB) (9.01 MB)
Climate extreme events have been observed more frequently since the 1970s throughout Ethiopia, which adversely affects the socio-economic development of the country, as its economy depends on agriculture, which, in turn, relies heavily on annual and seasonal rainfall. Climate extremes studies conducted in Ethiopia are mainly limited to a specific location or watershed, making it difficult to have insights at the national level. The present study thus aims to examine the observed climate extreme events in Ethiopia at both station and agro-ecological zone (AEZ) levels. Daily rainfall and temperature data for 47 and 37 stations, respectively (1986 up to 2020), were obtained from the National Meteorology Agency (NMA). The Modified Mann–Kendall (MMK) trend test and the Theil–Sen slope estimator were employed to estimate the trends in rainfall and temperature extremes. This study examines trends of 13 temperature and 10 rainfall extreme indices using RClimDex in R software. The results revealed that most of the extreme rainfall indices showed a positive trend in the majority of the climate stations. For example, an increase in consecutive dry days (CDD), very heavy rainfall days (R20), number of heavy rainfall days (R10) and consecutive wet days (CWD) were exhibited in most climate stations. In relation to AEZs, the greater number of extreme rainfall indices illustrated an upward trend in cool and sub-humid, cool and humid, and cool and moist AEZs, a declining trend in hot arid AEZ, and equal proportions of increasing and decreasing trends in warm semi-arid AEZs. Concerning extreme temperature indices, the result indicated an increasing trend of warm temperature extreme indices and a downward trend of cold temperature extreme indices in most of the climate stations, indicating the overall warming and dryness trends in the country. With reference to AEZs, an overall warming was exhibited in all AEZs, except in the hot arid AEZ. The observed trends in the rainfall and temperature extremes will have tremendous direct and indirect impacts on agriculture, water resources, health, and other sectors in the country. Therefore, the findings suggest the need for identifying and developing climate change adaptation strategies to minimize the ill effects of these extreme climate events on the social, economic, and developmental sectors.

11 Tefera, G. W.; Dile, Y. T.; Srinivasan, R.; Baker, T.; Ray, R. L. 2023. Hydrological modeling and scenario analysis for water supply and water demand assessment of Addis Ababa City, Ethiopia. Journal of Hydrology: Regional Studies, 46:101341. [doi: https://doi.org/10.1016/j.ejrh.2023.101341]
Water supply ; Hydrological modelling ; Water demand ; Water reservoirs ; Water management ; Sedimentation ; Surface water ; Ecosystem services ; Infrastructure ; Population growth ; Nature-based solutions ; Urbanization ; Urban areas ; Land cover ; Land use ; Water quality ; Groundwater recharge ; Water treatment ; Evaporation ; Towns ; Stream flow ; Land management ; Uncertainty ; Domestic water ; Water requirements ; Soil erosion ; Water availability / Ethiopia / Addis Ababa / Akaki Watershed / Awash Basin / Gefersa Reservoir / Dire Reservoir
(Location: IWMI HQ Call no: e-copy only Record No: H051793)
https://www.sciencedirect.com/science/article/pii/S2214581823000289/pdfft?md5=2fcae8ae99650612b75d6c87c10a2599&pid=1-s2.0-S2214581823000289-main.pdf
https://vlibrary.iwmi.org/pdf/H051793.pdf
(6.19 MB) (6.19 MB)
Study region: Addis Ababa, capital city of Ethiopia. Addis Ababa’s surface water reservoirs and groundwater infrastructures are in the Akaki watershed of the Awash Basin.
Study focus: This study integrates a hydrological model, socioeconomic data, and different water management scenarios to investigate the current and future water supply and demand. Baseline water supply and water demand data are obtained from Addis Ababa Water and Sewerage Authority. The Soil and Water Assessment Tool (SWAT) model was used to simulate reservoir sedimentation and water quantity in the Akaki watershed. The city’s water demand projection is based on the standard public water demand requirement and projected population. The study considered five scenarios to assess the gaps between water supply and demand.
New hydrological insights for the region: Simulation results showed that the area upstream of the existing reservoirs has the potential to supply 651,452 m3 /day of surface water; however, currently, the reservoirs are supplying only 224,658 m3 /day of water. With an optimistic scenario of planned reservoirs and groundwater boreholes becoming operational by 2029, water supply will only meet demands through 2035. Afterwards, the gap between water supply and demand will increase, due to an increase in population. Therefore, additional water supply projects, effective water use, and maintaining critical hydrological ecosystem services are required to bridge the gap between water supply and demand.

12 Xie, H.; Dile, Y. T.; Ringler, C.; Srinivasan, R.; Worqlul, A. W. 2023. Toward a better understanding of the environmental impacts of expanding farmer-led irrigation in Sub-Saharan Africa: an exploratory assessment of irrigation-induced risk of nutrient water pollution in Ethiopia. Environmental Research Communications, 5(6):065001. [doi: https://doi.org/10.1088/2515-7620/acd6db]
Farmer-led irrigation ; Environmental impact ; Water pollution ; Fertilizers ; Crop production ; Agricultural production ; Rain ; Cropping patterns ; Land management / Africa South of Sahara / Ethiopia / Bahir Dar Zuria / Dangla / Adami Tulu / Lemo
(Location: IWMI HQ Call no: e-copy only Record No: H052003)
https://iopscience.iop.org/article/10.1088/2515-7620/acd6db/pdf
https://vlibrary.iwmi.org/pdf/H052003.pdf
(2.03 MB) (2.03 MB)
Irrigation, and especially farmer-led irrigation, is considered to be a promising option for enhancing agricultural productivity in Sub-Saharan Africa. However, there is a lack of thorough understanding of the impacts of irrigation development on environment. Past discussions are mainly limited to the water depletion and hydrological regime change effect of irrigation. This paper presents a study to narrow the knowledge gap by assessing nutrient water pollution risk induced by the expansion of farmer-led irrigation in Ethiopia. Using household survey data collected from four woredas in Ethiopia where irrigated crop production currently concentrates, we first evaluate the impact of irrigation on cropping intensity and annual consumption level of fertilizers and then use the findings of the household survey data analysis to support conceptualization of a modeling framework for assessing agricultural nutrient water pollution risk from farmer-led irrigation development in Ethiopia at national scale. We project that overall farmer-led irrigation development in Ethiopia will lead to a gentle increase in national total of agricultural nutrient loadings. This result helps justify the endeavor of promoting farmer-led irrigation in Ethiopia. On the other hand, the projected nutrient flow and nutrient loading growth rate related to the farmer-led irrigation expansion are highly heterogeneous spatially, and risk of local water quality deterioration exists. There is still need to make investment to ensure the environmental sustainability of farmer-led irrigation development.

13 Aniley, E.; Gashaw, T.; Abraham, T.; Demessie, S. F.; Bayabil, H. K.; Worqlul, A. W.; van Oel, P. R.; Dile, Y. T.; Chukalla, A. D.; Haileslassie, Amare; Wubaye, G. B. 2023. Evaluating the performances of gridded satellite/reanalysis products in representing the rainfall climatology of Ethiopia. Geocarto International, 38(1):2278329. [doi: https://doi.org/10.1080/10106049.2023.2278329]
Rainfall ; Datasets ; Weather data ; Performance assessment ; Climatology ; Satellite observation ; Agroecological zones ; Precipitation / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H052402)
https://www.tandfonline.com/doi/epdf/10.1080/10106049.2023.2278329?needAccess=true
https://vlibrary.iwmi.org/pdf/H052402.pdf
(3.33 MB) (3.33 MB)
This study evaluated performances of the Climate Hazard Group Infrared Precipitation with stations version 2.0 (CHIRPS v2.0) and Multi-Source Weighted-Ensemble Precipitation version 2.8 (MSWEP v2.8) products against observed data. Rainfall climatology was simulated for different agro-ecological zones (AEZs) of Ethiopia during 1991–2020 at different temporal scales. Performance evaluations were made using continuous and statistical performance measures as well as Probability Density Function (PDF). CHIRPS v2.0 for estimating monthly, seasonal, and annual rainfall totals, and MSWEP v2.8 for daily rainfall have shown better performance over all AEZs. The two products display comparable performance for detecting daily rainfall occurrences over alpine AEZ, but MSWEP v2.8 is superior in the rest four AEZs. CHIRPS v2.0 outperforms MSWEP v2.8 for detecting most of the daily rainfall intensity classes over all AEZs. The findings will play a noteworthy role to improve the quality of hydro-climate studies in Ethiopia.

14 Gashaw, T.; Wubaye, G. B.; Worqlul, A. W.; Dile, Y. T.; Mohammed, J. A.; Birhan, D. A.; Tefera, G. W.; van Oel, P. R.; Haileslassie, Amare; Chukalla, A. D.; Taye, Meron Teferi; Bayabil, H. K.; Zaitchik, B.; Srinivasan, R.; Senamaw, A.; Bantider, A.; Adgo, E.; Seid, Abdulkarim. 2023. Local and regional climate trends and variabilities in Ethiopia: implications for climate change adaptations. Environmental Challenges, 13:100794. [doi: https://doi.org/10.1016/j.envc.2023.100794]
Climate change adaptation ; Climate variability ; Trends ; Strategies ; Rainfall ; Temperature ; Agroecological zones ; Meteorological stations ; Spatial distribution / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H052409)
https://www.sciencedirect.com/science/article/pii/S2667010023001178/pdfft?md5=7a942050dc761a0e0ab04c909ca6637b&pid=1-s2.0-S2667010023001178-main.pdf
https://vlibrary.iwmi.org/pdf/H052409.pdf
(4.10 MB) (4.10 MB)
Ethiopia is experiencing considerable impact of climate change and variability in the last five decades. Analyzing climate trends and variability is essential to develop effective adaptation strategies, particularly for countries vulnerable to climate change. This study analyzed trends and variabilities of climate (rainfall, maximum temperature (Tmax), and minimum temperature (Tmin)) at local and regional scales in Ethiopia. The local analysis was carried out considering each meteorological station, while the regional analyses were based on agroecological zones (AEZs). This study used observations from 47 rainfall and 37 temperature stations obtained from the Ethiopian Meteorological Institute (EMI) for the period of 1986 to 2020. The Modified Mann-Kendall (MMK) trend test and Theil Sen’s slope estimator were used to analyze the trends and magnitudes of change, respectively, in rainfall as well as temperature. The coefficient of variation (CV) and standardized anomaly index (SAI) were also employed to evaluate rainfall and temperature variabilities. The local level analysis revealed that Bega (dry season), Kiremt (main rainy season), and annual rainfall showed increasing trend, albeit no significant, in most stations, but the rainfall in Belg (small rainy) season showed a non-significant decreasing trend. The regional levels analysis also indicated an increasing trend of Bega, Kiremt, and annual rainfall in most AEZs, while Belg rainfall showed a decreasing trend in the greater number of AEZs. The result of both local and regional levels of analysis discerned a spatially and temporally more homogeneous warming trend. Both Tmax and Tmin revealed an increasing trend in annual and seasonal scales at most meteorological stations. Likewise, an increase was recorded for mean Tmax and Tmin in entire/most AEZs. The observed trends and variabilities of rainfall and temperature have several implications for climate change adaptations. For example, the decrease in Belg rainfall in most AEZs would have a negative impact on areas that heavily depend on Belg season’s rainfall for crop production. Some climate adaptation options include identifying short maturing crop varieties, soil moisture conservation, and supplemental irrigation of crops using harvested water during the main rainy season. Conversely, since the first three months of Bega season (October to December) are crop harvest season in most parts of Ethiopia, the increase in Bega rainfall would increase crop harvest loss, and hence, early planting date and identifying short maturing crops during the main rainy season are some climate adaptation strategies. Because of the increase in temperature, water demand for irrigation during Bega season will increase due to increased evapotranspiration. On the other hand, the increase in Kiremt rainfall can be harvested and used for supplemental irrigation during Bega as well as the small rainy season, particularly for early planting. In view of these findings, it is imperative to develop and implement effective climate-smart agricultural strategies specific to each agro-ecological zone (AEZ) to adapt to rainfall and temperature changes and variabilities.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO