Your search found 2 records
1 Grum, B; Hessel, R.; Kessler, A.; Woldearegay, K.; Yazew, E.; Ritsema, C.; Geissen, V. 2016. A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions. Agricultural Water Management, 173:35-47. [doi: https://doi.org/10.1016/j.agwat.2016.04.018]
Water harvesting ; Techniques ; Indicators ; Decision support systems ; Arid zones ; Semiarid zones ; Watersheds ; Socioeconomic environment ; Ecological factors ; Biophysics ; Cultivated land ; Soils ; Rain ; GIS ; Mapping ; Stakeholders ; Case studies / Ethiopia / Upper Geba Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H047605)
https://vlibrary.iwmi.org/pdf/H047605.pdf
(3.70 MB)
Water harvesting techniques (WHTs) improve the availability of water, which is essential for growing crops, especially in arid and semi-arid areas. A decision support approach can help in the selection of WHTs suitable under site-specific bio-physical and socio-economic conditions. This paper describes a participatory approach for the selection of suitable WHTs in watersheds in (semi) arid regions. It builds on a database of suitability indicators for WHTs, which was developed by integrating worldwide knowledge on their suitability. Once developed, the approach was applied on a case study for WHTs in the upper Geba watershed in northern Ethiopia. First, based on evaluation criteria and participants’ scientific and local knowledge, a pre-selection of most promising WHTs took place in a multi-stakeholder workshop. Next, the suitability indicators and a GIS-based multi-criteria analysis (MCA) were used to identify suitable areas for these WHTs. The results of the MCA were presented to stakeholders during a second stakeholder workshop. At this workshop, a final selection of WHTs to test was made based on a participatory ranking of WHTs using economic, ecological and socio-cultural criteria. The MCA approach was validated by comparing the predicted suitable areas with the already existing WHTs in the watershed. This led to the result that 90% of the existing check dams and 93% of the percolation ponds were correctly identified by the approach. We conclude therefore that this approach can be successfully applied for the participatory selection of WHTs and the identification of suitable areas for their implementation. Given that this approach is based on the newly developed database of WHTs, it can be easily applied in other (semi) arid regions.

2 Grum, B.; Assefa, D.; Hessel, R.; Woldearegay, K.; Ritsema, C. J.; Aregawi, B.; Geissen, V. 2017. Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid northern Ethiopia. Agricultural Water Management, 193:153-162. [doi: https://doi.org/10.1016/j.agwat.2017.08.009]
Water availability ; Water harvesting ; Techniques ; Straw mulches ; Ridge tillage ; Soil moisture ; Runoff ; Soil hydraulic properties ; Rain ; Hydrometeorology ; Watersheds ; Semiarid zones / Ethiopia / Gule Sub-Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H048375)
https://vlibrary.iwmi.org/pdf/H048375.pdf
(2.78 MB)
Crop production in arid and semi-arid environments is strongly affected by temporal variation of water availability during the growth period. In-situ water harvesting techniques such as tied ridges and mulching improve water availability over time and may improve crop yield. A field experiment was conducted in 2013 and 2014 in the Gule sub-watershed, Northern Ethiopia to study the effect of combining in-situ water harvesting techniques on on-site water regime, i.e., runoff and soil-moisture content. Five treatments with tied ridges, straw mulch, tied ridges and straw mulch together, straw mulch plus effective microorganisms and a combination of tied ridges, straw mulch and effective microorganisms and an untreated control were tested. Combined tied ridges and straw mulch with and without effective microorganisms significantly reduced average runoff per event by 78 and 88%, respectively, compared to the control. Tied ridges alone reduced runoff by 56% and straw mulch with and without effective microorganisms reduced runoff by 49 and 53%, respectively. Average soil-moisture content over the two years was significantly higher (22.4%) in combined tied ridges and straw mulch than the control (19.9%). Tied ridges or straw mulch alone significantly reduced runoff and improved soil-moisture content, but the two combined were more efficient. The findings suggest that combining straw mulch and tied ridges enhance water infiltration into the soil and improve water availability during the growing season, thereby protecting crops from dry periods.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO