Your search found 9 records
1 Martius, C.; Lamers, J.; Wehrheim, P.; Schoeller-Schletter, A.; Eshchanov, R.; Tupitsa, A.; Khamzina, A.; Akramkhanov, A.; Vlek, P. L. G. 2004. Developing sustainable land and water management for the Aral Sea Basin through an interdisciplinary approach. In Seng, V.; Craswell, E.; Fukai, S.; Fischer, K. (Eds.), Water in agriculture: Proceedings of a CARDI International Conference “Research on Water in Agricultural Production in Asia for the 21st Century” Phnom Penh, Cambodia, 25-28 November 2003. Canberra, Australia: ACIAR. pp.45-60.
Land management ; Water management ; Ecology ; Research projects ; Natural resources ; Resource management ; Agricultural production / Central Asia / Aral Sea
(Location: IWMI-HQ Call no: 631.7.2 G000 SEN Record No: H034946)

2 Worbes, M.; Botman, E.; Khamzina, A.; Tupitsa, A.; Martius, C.; Lamers, J. P. A. 2006. Scope and constraints for tree planting in the irrigated landscapes of the Aral Sea Basin: case studies in Khorezm Region, Uzbekistan. Bonn, Germany: Center for Development Research. 49p. (ZEF Discussion Papers on Development Policy 112)
Lakes ; Agroforestry ; Trees ; Windbreak trees ; Forests ; Legal aspects ; Irrigated land ; Farmers attitudes ; Legal aspects / Central Asia / Uzbekistan / Aral Sea Basin / Khorezm
(Location: IWMI HQ Call no: e-copy only Record No: H041351)
http://www.zef.de/fileadmin/webfiles/downloads/zef_dp/zefdp_112.pdf
https://vlibrary.iwmi.org/pdf/H041351.pdf

3 Qadir, Manzoor; Martius, C.; Khamzina, A.; Lamers, J. P. A. 2010. Harnessing renewable energy from abandoned salt-affected lands and saline drainage networks in the dry areas. In El-Beltagy, A.; Saxena, M. C. (Eds.). Sustainable development in drylands: meeting the challenge of global climate change. Proceedings of the Ninth International Conference on Development of Drylands, Alexandria, Egypt, 7-10 November 2008. Theme 8 - Reducing greenhouse gas emission through harnessing renewable energy in the dry areas. Giza, Cairo, Egypt: International Dryland Development Commission (IDDC). pp.836-845.
Renewable energy ; Biofuels ; Saline soils ; Drainage water ; Arid zones
(Location: IWMI HQ Call no: e-copy only Record No: H043582)
https://vlibrary.iwmi.org/pdf/H043582.pdf
(4.30 MB)

4 Bobojonov, I; Martius, C.; Lamers, J. P. A. 2010. Economic analysis of policy scenarios for developing degraded drylands under uncertainty of irrigation water availability in the Khorezm region of Uzbekistan. Qadir, Manzoor; Wichelns, Dennis; Oster, J.; Jacobsen, S. -E.; Basra, S. M. A.; Choukr-Allah, R. (Eds.). Sustainable management of saline waters and salt-affected soils for agriculture: proceedings of the Second Bridging Workshop, Aleppo, Syria, 15-18 November 2009. Stimulating session 6. Aleppo, Syria: International Center for Agricultural Research in the Dry Areas (ICARDA); Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.92-97.
Economic analysis ; Soil salinity ; Water use efficiency ; Water scarcity ; Water rates / Central Asia / Uzbekistan / Khorezm Region
(Location: IWMI HQ Call no: IWMI 631.7.5 GG30 QAD Record No: H043352)
http://www.icarda.org/wli/pdfs/Books/ProceedingsOfSecondBridgingWorkshopBook.pdf
https://vlibrary.iwmi.org/pdf/H043352.pdf
(0.42 MB) (3.08 MB)

5 Awan, Usman Khalid; Tischbein, B.; Martius, C.. 2013. Combining hydrological modeling and GIS approaches to determine the spatial distribution of groundwater recharge in an arid irrigation scheme. Irrigation Science, 31(4):793-806. [doi: https://doi.org/10.1007/s00271-012-0362-0]
Groundwater recharge ; Water balance ; Models ; GIS ; Remote sensing ; Irrigation schemes ; Irrigation efficiency ; Water user associations ; Cropping patterns ; Evapotranspiration / Uzbekistan
(Location: IWMI HQ Call no: PER Record No: H045847)
https://vlibrary.iwmi.org/pdf/H045847.pdf
(0.48 MB)
Accurate quantification of the rate of groundwater (GW) recharge, a pre-requisite for the sustainable management of GW resources, needs to capture complex processes, such as the upward flow of water under shallow GW conditions, which are often disregarded when estimating recharge at a larger scale. This paper provides (1) a method to determine GW recharge at the field level, (2) a consequent procedure for up-scaling these findings from field to irrigation scheme level and (3) an assessment of the impacts of improved irrigation efficiency on the rate of GW recharge. The study is based on field data from the 2007 growing season in a Water Users Association (WUA Shomakhulum) in Khorezm district of Uzbekistan, Central Asia, an arid region that is characterized by a predominance of cotton, wheat and rice under irrigation. Previous qualitative studies in the region reported irrigation water supplies far above the crop water requirements, which cause GW recharge. A field water balance model was adapted to the local irrigation scheme; recharge was considered to be a fraction of the irrigation water losses, determined as the difference between net and gross irrigation requirements. Capillary rise contribution from shallow GW levels was determined with the HYDRUS-1D model. Six hydrological response units (HRUs) were created based on GW levels and soil texture using GIS and remote sensing techniques. Recharge calculated at the field level was up-scaled first to these HRUs and then to the whole WUA. To quantify the impact of improved irrigation efficiency on recharge rates, four improved irrigation efficiency scenarios were developed. The area under cotton had the second highest recharge (895 mm) in the peak irrigation period, after rice with 2,514 mm. But with a low area share of rice in the WUA of <1 %, rice impacted the total recharge only marginally. Due to the higher recharge rates of cotton, which is grown on about 40 % of the cropped area, HRUs with a higher share of cotton showed higher recharge (9.6 mm day-1 during August) than those with a lower share of cotton (4.4 mm day-1). The high recharge rates in the cotton fields were caused by its water requirements and the special treatment given to this crop by water management planners due to its strategic importance in the country. The scenario simulations showed that seasonal recharge under improved irrigation efficiency could potentially be reduced from 4 mm day-1 (business-as-usual scenario) to 1.4 mm day-1 (scenario with maximum achievable efficiency). The combination of field-level modeling/monitoring and GIS approaches improved recharge estimates because spatial variability was accounted for, which can assist water managers to assess the impact of improved irrigation efficiencies on groundwater recharge. This impact assessment enables managers to identify options for a recharge policy, which is an important component of integrated management of surface and groundwater resources.

6 Bekchanov, Maksud; Lamers, J. P. A.; Martius, C.. 2014. Coping with water scarcity in the irrigated lowlands of the lower Amudarya basin, Central Asia. In Lamers, J. P. A.; Khamzina, A.; Rudenko, I.; Vlek, P. L. G. (Eds.). Restructuring land allocation, water use and agricultural value chains: technologies, policies and practices for the lower Amudarya region. Bonn, Germany: Bonn University Press. pp.199-216.
Water scarcity ; Irrigated land ; Irrigation water ; Water use efficiency ; Irrigation methods ; Furrow irrigation ; Drip irrigation ; Farmers ; Soil moisture ; Crop management ; Rice ; Maize ; Organic fertilizers ; Economic aspects / Central Asia / Uzbekistan / Lower Amudarya Basin / Khorezm Region
(Location: IWMI HQ Call no: e-copy only Record No: H046731)
https://vlibrary.iwmi.org/pdf/H046731.pdf
(0.15 MB)
Improving irrigation efficiency is of utmost importance in the irrigated lands of Central Asia, such as the Khorezm region of Uzbekistan, since water misuse and subsequent soil salinization threaten environment, economy, and livelihoods. To this end, several field-level ‘water-wise’ innovations were selected, which are classified into four groups that address crop pattern change, soil moisture maintenance, uniform water distribution, and furrow irrigation improvement. The potential of these innovations to raise irrigation water use efficiency from its current low level was analyzed from a socio-economic and technical point of view with a focus on short-term measures to cope with sudden water shortages. The overall water use reduction potential of these options was estimated considering their adoption feasibility within the time horizon of one year. To prioritize the examined innovations according to their contribution to overall water use reduction and water profitability, ‘marginal water profitability curves’ were developed. This integrated approach could serve as a simple but effective policy tool. The findings indicate that the option of replacing rice by maize contributes to more than 50 % of the total possible water use reduction. However, while all the other options increase the total revenue, reduced revenues will be unavoidable when paddy rice is replaced by maize. Manuring provides the highest additional profit per volume of reduced water use, but contributes less than 10 % of the total water use reduction potential. With water-wise options as an immediate and short-term measure to cope with sudden water shortages, the theoretical total estimated water reduction at the field level amounts to 183 – 376,000,000 m3 or 9.0 – 18.5 % of the current total irrigation water requirement in the region. For coping with sudden shortages characterized by a water availability of only 60 % of the normal water supply, long-term planning and management of irrigation activities focusing on a wider adoption of advanced irrigation technologies are necessary.

7 Wehrheim, P.; Schoeller-Schletter, A.; Martius, C.. (Eds.) 2008. Continuity and change Land and water use reforms in rural Uzbekistan: socio-economic and legal analyses for the region Khorezm. Halle (Saale), Germany: Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO). 203p. (Studies on the agricultural and food sector in Central and Eastern Europe 43)
Water use ; Land use ; Land reform ; Agrarian reform ; Legal aspects ; Agricultural production ; Cotton ; Markets ; Water allocation ; Water user associations ; Farms ; Farmers ; Crop management ; Hydrology ; Simulation models ; Technological changes ; State intervention ; Policy ; Ecological factors ; Rural areas ; Socioeconomic development / Uzbekistan / Khorezm Region
(Location: IWMI HQ Call no: 333.9113 G782 WEH Record No: H047294)
http://www.iamo.de/fileadmin/documents/sr_vol43.pdf
https://vlibrary.iwmi.org/pdf/H047294.pdf
(1.79 MB) (1.79 MB)

8 Awan, U. K.; Tischbein, B.; Martius, C.. 2015. Simulating groundwater dynamics using feflow-3D groundwater model under complex irrigation and drainage network of dryland ecosystems of Central Asia. Irrigation and Drainage, 64(2):283-296. [doi: https://doi.org/10.1002/ird.1897]
Groundwater recharge ; Surface water ; Water levels ; Hydrology ; Water balance ; Simulation models ; Drainage systems ; Irrigation efficiency ; Water user associations ; Arid zones ; Ecosystems / Central Asia / Uzbekistan / Khorezm Region
(Location: IWMI HQ Call no: e-copy only Record No: H047442)
https://vlibrary.iwmi.org/pdf/H047442.pdf
(2.19 MB)
Surface and groundwater resources are often conjunctively used to cope with water scarcity in irrigated agriculture. Farmers in the dryland ecosystems of central Asia also utilize shallow groundwater in addition to surface water withdrawn from rivers. This study modelled groundwater dynamics in an irrigation and drainage network in Khorezm region, Uzbekistan. The system, characterized by a vast, unlined channel network used to convey water mainly for flood irrigation and an open drainage system, is typical of Central Asian irrigated areas. Groundwater levels in the region are shallow—this contributes to crop water requirements but threatens crop production through secondary salinization. High losses during irrigation in fields and through the irrigation network are the main causes of these shallow groundwater levels. The main objective of this study was thus to simulate groundwater levels under improved irrigation efficiency scenarios. The FEFLOW-3D model, applied in a case study to the water users’ association (WUA) of Shomakhulum in south-west Khorezm, was used to quantify the impact of improved irrigation efficiency scenarios on groundwater dynamics. The modelled scenarios were: current irrigation efficiency (S-A, our baseline), improved conveyance efficiency (S-B), increased field application efficiency (S-C), and improved conveyance and application efficiency (S-D). Recharge rates were separately determined for six hydrological response units (differing in groundwater level and soil type) and introduced into the FEFLOW-3D model. After successful model calibration (R2 = 0.94) and validation (R2 = 0.93), the simulations showed that improving irrigation efficiency under existing agro-hydroclimatic conditions would lower groundwater levels from the baseline scenario (S-A) in August (the peak irrigation period) on average by 12 cm in S-B, 38 cm in S-C and 44 cm in S-D. Any interventions which would improve irrigation efficiency will lower the groundwater levels and hence policy makers should consider them and formulate the policy accordingly.

9 Vlek, P. L. G.; Khamzina, A.; Azadi, H.; Bhaduri, A.; Bharati, Luna; Braimoh, A.; Martius, C.; Sunderland, T.; Taheri, F. 2017. Trade-offs in multi-purpose land use under land degradation. Sustainability, 9(12):1-19. [doi: https://doi.org/10.3390/su9122196]
Land degradation ; Land use ; Land conservation ; Multipurpose varieties ; Farmland ; Ecosystem services ; Integrated land management ; Water management ; Urbanization ; Biodiversity ; Farmers ; Stakeholders ; Soil moisture ; Climate change ; Carbon stock assessments ; Crop production
(Location: IWMI HQ Call no: e-copy only Record No: H048411)
http://www.mdpi.com/2071-1050/9/12/2196/pdf
https://vlibrary.iwmi.org/pdf/H048411.pdf
(13.9 MB)
Land provides a host of ecosystem services, of which the provisioning services are often considered paramount. As the demand for agricultural products multiplies, other ecosystem services are being degraded or lost entirely. Finding a sustainable trade-off between food production and one or more of other ecosystem services, given the variety of stakeholders, is a matter of optimizing land use in a dynamic and complex socio-ecological system. Land degradation reduces our options to meet both food demands and environmental needs. In order to illustrate this trade-off dilemma, four representative services, carbon sinks, water storage, biodiversity, and space for urbanization, are discussed here based on a review of contemporary literature that cuts across the domain of ecosystem services that are provided by land. Agricultural research will have to expand its focus from the field to the landscape level and in the process examine the cost of production that internalizes environmental costs. In some situations, the public cost of agriculture in marginal environments outweighs the private gains, even with the best technologies in place. Land use and city planners will increasingly have to address the cost of occupying productive agricultural land or the conversion of natural habitats. Landscape designs and urban planning should aim for the preservation of agricultural land and the integrated management of land resources by closing water and nutrient cycles, and by restoring biodiversity.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO