Your search found 4 records
1 Nikiema, Josiane; Cofie, Olufunke; Impraim, Robert; Adamtey, N.. 2013. Processing of fecal sludge to fertilizer pellets using a low-cost technology in Ghana. Environment and Pollution, 2(4):70-87. [doi: https://doi.org/10.5539/ep.v2n4p70]
Fertilizers ; Faecal coliforms ; Sewage sludge ; Pellets ; Composts ; Gamma irradiation ; Moisture content ; Public health ; Analytical methods / Ghana
(Location: IWMI HQ Call no: e-copy only Record No: H046116)
http://www.ccsenet.org/journal/index.php/ep/article/download/28987/17903
https://vlibrary.iwmi.org/pdf/H046116.pdf
(1.50 MB) (1.51MB)
This paper describes a study that was aimed at optimizing the pelletization of fecal sludge-based fertilizers for agricultural use. The process developed is easy to implement and increases the marketability of the products while also addressing a serious health and environmental challenge. The study took place during the period 2011-2012 in Ghana. The fecal sludge, rich in nutrients and organic matter, was dried and used to produce five different fertilizers (i.e., four formulations of compost and one with gamma irradiated material). Each material was then pelletized using locally constructed machinery. Key operating parameters, such as moisture content (10-55% in mass), binder type (clay or starch) and concentration (0-10% in mass), were varied and their impacts on the characteristics of pellets (e.g., amount of fine materials generated, length distribution or stability of pellets, and pellet disintegration rate) were also followed. Given the low analyzing capabilities of developing countries, some simple analytical methods were developed and used to compare pellets produced under different conditions. The results confirmed that the addition of 3% of pregelatinized starch is recommended during pelletization of fecal sludge-based fertilizers. Applicable moisture contents were also identified per fertilizer type, and were found to comprise between 21 and 43%.

2 Nikiema, Josiane; Cofie, Olufunke; Asante-Bekoe, Barbara; Otoo, Miriam; Adamtey, N.. 2014. Potential of locally available products for use as binders in producing fecal compost pellets in Ghana. Environmental Progress and Sustainable Energy, 33(2):504-511. [doi: https://doi.org/10.1002/ep.11790]
Faeces ; Composts ; Fertilizers ; Binders ; Crops ; Cassava ; Soil fertility ; Costs ; Pelleting ; Clay ; Beeswax ; Classification ; Water holding capacity ; Environmental effects ; Risks / Ghana
(Location: IWMI HQ Call no: e-copy only Record No: H046137)
https://vlibrary.iwmi.org/pdf/H046137.pdf
(1.81 MB)
Market studies in Ghana have revealed a potential for composted or cocomposted fecal matter as nutrient source inputs for agricultural production. To increase the marketability of such products, high nutrient value and easier handling/transporting options are among the significant factors which drive demand. Pelletization is seen as a potentially interesting option to address these challenges. To preserve form stability of the pellet products, the addition of a binding material during the pelletization process is crucial. In Ghana, water, beeswax, clay, and cassava starch have been identified as locally available binding materials. A comparative assessment of these materials as a premier binder suitable for pelletization was performed based on predefined criteria. Quantitative criteria considered included the total amounts available, the seasonal variation during the year and cost. Qualitative criteria such as handling and storage conditions, ease of use during pelletization, and the binding ability were also evaluated. Based on this assessment, clay and cassava-based starch were selected as the most promising binding agents. Currently, clay is abundant in Ghana and this may suggest a guarantee for consistent and stable supply over coming years. However, from the perspective of cassava-based starch, this situation depicts limited production of starch and competition on the local markets.

3 Cofie, Olufunke; Nikiema, Josiane; Impraim, Robert; Adamtey, N.; Paul, Johannes; Kone, D. 2016. Co-composting of solid waste and fecal sludge for nutrient and organic matter recovery. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 47p. (Resource Recovery and Reuse Series 03) [doi: https://doi.org/10.5337/2016.204]
Resource recovery ; Environmental effects ; Nutrients ; Solid wastes ; Recycling ; Composting ; Faecal coliforms ; Sewage sludge ; Urbanization ; Urban wastes ; Food wastes ; Waste management ; Developing countries ; Farmyard manure ; Excreta ; Soil organic matter ; Organic wastes ; Organic fertilizers ; Public health ; Health hazards ; Sanitation ; Moisture content ; Temperature ; pH ; Microorganisms ; Aeration ; Pathogens ; Emission ; Livestock ; Heavy metals
(Location: IWMI HQ Call no: IWMI Record No: H047536)
http://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_3.pdf
(3 MB)
Biological treatment, composting, in particular, is a relatively simple, durable and inexpensive alternative for stabilizing and reducing biodegradable waste. Co-composting of different waste sources allows to enhance the compost nutrient value. In particular, integration of ‘biosolids’ from the sanitation sector as potential input material for co-composting would provide a solution for the much needed treatment of fecal sludge from on-site sanitation systems, and make use of its high nutrient content. This research paper elaborates in detail the main parameters that govern the co-composting process as well as factors that control the production of a safe and valuable quality compost. It further explains technological options to tailor the final product to crop and farmer needs.

4 Amoah, Philip; Adamtey, N.; Cofie, Olufunke. 2017. Effect of urine, poultry manure, and dewatered faecal sludge on agronomic characteristics of cabbage in Accra, Ghana. Resources, 6(2):1-14. [doi: https://doi.org/10.3390/resources6020019]
Soil chemicophysical properties ; Soil analysis ; Chemical analysis ; Fertilizer application ; pH ; Urine ; Poultry droppings ; Organic fertilizers ; Faecal sludge ; Agronomic characters ; Nutrient uptake ; Urban agriculture ; Cabbages ; Nitrogen fertilizers ; Wet season ; Farmers ; Environmental pollution ; Water pollution / Ghana / Accra
(Location: IWMI HQ Call no: e-copy only Record No: H048132)
http://www.mdpi.com/2079-9276/6/2/19/pdf
https://vlibrary.iwmi.org/pdf/H048132.pdf
(1.39 MB)
The study was to assess the: (i) effect of human urine and other organic inputs on cabbage growth, yield, nutrient uptake, N-use efficiency, and soil chemical characteristics; (ii) economic returns of the use of urine and/or other organic inputs as a source of fertiliser for cabbage production. To meet these objectives, participatory field trials were conducted at Dzorwulu, Accra. Four different treatments (Urine alone, Urine + dewatered faecal sludge (DFS), Urine + poultry droppings (PD), NPK (15-15-15) + PD) were applied in a Randomised Complete Block Design (RCBD) with soil alone as control. Each treatment was applied at a rate of 121 kg·N·ha-1 corresponding to the Nitrogen requirement of cabbage in Ghana. Growth and yield parameters, plant nutrient uptake, and soil chemical characteristics were determined using standard protocols. There were no significant differences between treatments for cabbage head weight, or total and marketable yields. However, unmarketable yield from NPK + PD was 1 to 2 times higher (p < 0.05) than those from Urine + PD, Urine + DFS, and Urine alone. Seasonal effect on yields was also pronounced with higher (p < 0.001) cabbage head weight (0.95 kg) and marketable yields (12.7 kg·ha-1) in the dry season than the rainy season (0.42 kg and 6.27 kg·ha-1). There was higher (p < 0.005) phosphorous uptake in cabbage from Urine + PD treated soil than those from other treatments. Nitrogen (N), phosphorous (P), and potassium (K) uptake in the dry season was significantly higher than the rainy season. Soils treated with Urine + DFS and Urine + PD were high in total N content. Urine + PD and Urine + DFS treated soils gave fairly high yield than PD + NPK with a net gain of US$1452.0 and US$1663.5, respectively. The application of urine in combination with poultry droppings has the potential to improve cabbage yields, nutrient uptake, and soil nitrogen and phosphorous content.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO