Your search found 2 records
1 Nangia, Vinay; Gowda, P. H.; Mulla, D. J.; Sands, G. R. 2008. Water quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scale. Journal of Environmental Quality, 37(2):296-307.
Water quality ; Simulation models ; Calibration ; Fertilizer application ; Nitrogen fertilizers ; Soyabeans ; Maize ; Subsurface drainage / USA / Gulf of Mexico / Mississippi River / Minnesota
(Location: IWMI HQ Call no: IWMI 631.8 G430 NAN Record No: H040829)
http://jeq.scijournals.org/cgi/reprint/37/2/296
https://vlibrary.iwmi.org/pdf/H040829.pdf
Nitrate losses from subsurface tile drained row cropland in the Upper Midwest U.S. contribute to hypoxia in the Gulf of Mexico. Strategies are needed to reduce nitrate losses to the Mississippi River. This paper evaluates the effect of fertilizer rate and timing on nitrate losses in two (East and West) commercial row crop fields located in south-central Minnesota. The Agricultural Drainage and Pesticide Transport (ADAPT) model was calibrated and validated for monthly subsurface tile drain flow and nitrate losses for a period of 1999–2003. Good agreement was found between observed and predicted tile drain flow and nitrate losses during the calibration period, with Nash-Sutcliff e modeling efficiencies of 0.75 and 0.56, respectively. Better agreements were observed for the validation period. The calibrated model was then used to evaluate the effects of rate and timing of fertilizer application on nitrate losses with a 50-yr climatic record (1954–2003). Significant reductions in nitrate losses were predicted by reducing fertilizer application rates and changing timing. A 13% reduction in nitrate losses was predicted when fall fertilizer application rate was reduced from 180 to 123 kg/ha. A further 9% reduction in nitrate losses can be achieved when switching from fall to spring application. Larger reductions in nitrate losses would require changes in fertilizer rate and timing, as well as other practices such as changing tile drain spacings and/or depths, fall cover cropping, or conversion of crop land to pasture.

2 White, E. Jr.; Kaplan, D. 2021. Identifying the effects of chronic saltwater intrusion in coastal floodplain swamps using remote sensing. Remote Sensing of Environment, 258:112385. [doi: https://doi.org/10.1016/j.rse.2021.112385]
Saltwater intrusion ; Coastal area ; Floodplains ; Wetlands ; Swamps ; Sea level ; Remote sensing ; Moderate resolution imaging spectroradiometer ; Vegetation index ; Freshwater ; Downstream ; Upstream ; Hydrology ; Ecosystem services / USA / Gulf of Mexico / Texas / Louisiana / Florida
(Location: IWMI HQ Call no: e-copy only Record No: H050452)
https://vlibrary.iwmi.org/pdf/H050452.pdf
(3.38 MB)
Coastal floodplain swamps (CFS) are an important part of the coastal wetland mosaic, however they are threatened due to accelerated rates of sea level rise and saltwater intrusion (SWI). While remote sensing-based detection of wholesale coastal ecosystem shifts (i.e., from forest to marsh) are relatively straightforward, assessments of chronic, low-level SWI into CFS using remote sensing have yet to be developed and can provide a critical early-warning signal of ecosystem deterioration. In this study, we developed nine ecologically-based hypotheses to test whether remote sensing data could be used to reliably detect the presence of CFS experiencing SWI. Hypotheses were motivated by field- and literature-based understanding of the phenological and vegetative dynamics of CFS experiencing SWI relative to unimpacted, control systems. Hypotheses were organized into two primary groups: those that analyzed differences in summary measures (e.g., median and distribution) between SWI-impacted and unimpacted control sites and those that examined timeseries trends (e.g., sign and magnitude of slope). The enhanced vegetation index (EVI) was used as a proxy for production/biomass and was generated using MODIS surface reflectance data spanning 2000 to 2018. Experimental sites (n = 8) were selected from an existing network of long-term monitoring sites and included 4 pairs of impacted/non-impacted CFS across the northern Gulf of Mexico from Texas to Florida. The four best-supported hypotheses (81% across all sties) all used summary statistics, indicating that there were significant differences in the EVI of CFS experiencing chronic, low-level SWI compared to controls. These hypotheses were tested using data across a large and diverse region, supporting their implementation by researchers and managers seeking to identify CFS undergoing the first phases of SWI. In contrast, hypotheses that assessed CFS change over time were poorly supported, likely due to the slow and variable pace of ecological change, relatively short remote sensing data record, and/or specific site histories. Overall, these results show that remote sensing data can be used to identify differences in CFS vegetation associated with long-term, low-level SWI, but further methodological advancements are needed to reliably detect the temporal transition process.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO