Your search found 4 records
1 Chen, D.; White, R.; Li, Y.; Zhang, J.; Li, B.; Zhang, Y.; Edis, R.; Huang, Y.; Cai, G.; Wei, Y.; Zhu, A.; Hu, K.; Li, G.; Zhu, Z. 2006. Conservation management of water and nitrogen in the North China Plain using a GIS-based water and nitrogen management model and agricultural decision support tool. In Willett, I. R.; Gao, Z. (Eds.) Agricultural water management in China: Proceedings of a workshop held in Beijing, China, 14 September 2005. Canberra, Australia: ACIAR. pp.26-38.
Water conservation ; Irrigated farming ; Nitrogen ; Fertilizers ; Wheat ; Maize ; GIS ; Decision support tools / China / North China Plain
(Location: IWMI-HQ Call no: 631.7 G592 WIL Record No: H039219)

2 Wei, Y.; Chen, D.; Edis, R.; White, R.; Davidson, B.; Zhang, J.; Li, B. 2006. The perspective of farmers on why the adoption rate of water-saving irrigation techniques is low in China. In Willett, I. R.; Gao, Z. (Eds.) Agricultural water management in China: Proceedings of a workshop held in Beijing, China, 14 September 2005. Canberra, Australia: ACIAR. pp.153-160.
Water conservation ; Farmers’ attitudes ; Irrigation water ; Farm surveys / China / Henan Province / Fengqiu County
(Location: IWMI-HQ Call no: 631.7 G592 WIL Record No: H039229)

3 Wei, Y.; Lu, M.; Wu, W.; Ru, Y. 2020. Multiple factors influence the consistency of cropland datasets in Africa. International Journal of Applied Earth Observation and Geoinformation, 89:102087. [doi: https://doi.org/10.1016/j.jag.2020.102087]
Farmland ; Datasets ; Land fragmentation ; Remote sensing ; Land cover mapping ; Moderate resolution imaging spectroradiometer ; Irrigated land ; Vegetation ; Precipitation ; Food security / Africa South of Sahara
(Location: IWMI HQ Call no: e-copy only Record No: H049971)
https://www.sciencedirect.com/science/article/pii/S0303243419310463/pdfft?md5=0684753fd3e8666ecb686aa90c95632d&pid=1-s2.0-S0303243419310463-main.pdf
https://vlibrary.iwmi.org/pdf/H049971.pdf
(4.01 MB) (4.01 MB)
Accurate geo-information of cropland is critical for food security strategy development and grain production management, especially in Africa continent where most countries are food-insecure. Over the past decades, a series of African cropland maps have been derived from remotely-sensed data, existing comparison studies have shown that inconsistencies with statistics and discrepancies among these products are considerable. Yet, there is a knowledge gap about the factors that influence their consistency. The aim of this study is thus to estimate the consistency of five widely-used cropland datasets (MODIS Collection 5, GlobCover 2009, GlobeLand30, CCI-LC 2010, and Unified Cropland Layer) in Africa, and to explore the effects of several limiting factors (landscape fragmentation, climate and agricultural management) on spatial consistency. The results show that total cropland area for Africa derived from GlobeLand30 has the best fitness with FAO statistics, followed by MODIS Collection 5. GlobCover 2009, CCI-LC 2010, and Unified Cropland Layer have poor performances as indicated by larger deviations from statistics. In terms of spatial consistency, disagreement is about 37.9 % at continental scale, and the disparate proportion even exceeds 50 % in approximately 1/3 of the countries at national scale. We further found that there is a strong and significant correlation between spatial agreement and cropland fragmentation, suggesting that regions with higher landscape fragmentation generally have larger disparities. It is also noticed that places with better consistency are mainly distributed in regions with favorable natural environments and sufficient agricultural management such as well-developed irrigated technology. Proportions of complete agreement are thus located in favorable climate zones including Hot-summer Mediterranean climate (Csa), Subtropical highland climate (Cwb), and Temperate Mediterranean climate (Csb). The level of complete agreement keeps rising as the proportion of irrigated cropland increases. Spatial agreement among these datasets has the most significant relationship with cropland fragmentation, and a relatively small association with irrigation area, followed by climate conditions. These results can provide some insights into understanding how different factors influence the consistency of cropland datasets, and making an appropriate selection when using these datasets in different regions. We suggest that future cropland mapping activities should put more effort in those regions with significant disagreement in Sub-Saharan Africa.

4 Indika, S.; Hu, D.; Wei, Y.; Yapabandara, I.; Cooray, T.; Makehelwala, M.; Jinadasa, K. B. S. N.; Weragoda, S. K.; Weerasooriya, R.; Pang, Z. 2023. Spatiotemporal variation of groundwater quality in North Central Province, Sri Lanka. ACS EST Water, 12p. (Online first) [doi: https://doi.org/10.1021/acsestwater.2c00490]
Groundwater ; Water quality ; Shallow water ; Nanofiltration ; Sustainable Development Goals ; Kidney diseases ; Chronic course ; Dry season ; Wet season ; Salinity ; Surface water ; Drinking water ; Fluorides ; Sodium ; Reverse osmosis ; Wells ; Evaporation ; Weathering ; Aquifers ; Parameters ; Irrigation water ; Organic matter ; Water supply ; Water treatment / Sri Lanka / North Central Province / Anuradhapura / Polonnaruwa
(Location: IWMI HQ Call no: e-copy only Record No: H051914)
https://vlibrary.iwmi.org/pdf/H051914.pdf
(7.18 MB)
This study focused on fulfilling the demand for a comprehensive investigation of groundwater quality in the North Central Province (NCP) of Sri Lanka to achieve United Nations Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all). The NCP was selected as the study area due to its highest prevalence of chronic kidney disease with unknown etiology within Sri Lanka. Here, 334 shallow and deep groundwater samples were collected at the end of wet and dry seasons, respectively. Results revealed that elevated and unexpected levels of salinity, hardness, fluoride, nitrate, sulfate, and dissolved organic carbon and the alkaline nature of groundwater were the main issues, and the Ca-HCO3 type was dominant in the groundwater. Water quality index analyses showed that 8.9% and 13.8% of wells had poor quality undrinkable groundwater in wet and dry seasons, respectively. Only 7% of samples were susceptible to sodium and salinity hazards for irrigational use. Reverse osmosis technology with a softening and activated carbon pretreatment process was identified as the most suitable way to treat groundwater with high salinity for many regions of the NCP. The groundwater quality atlas for the NCP created by this study was very useful for making a master plan of safe drinking water supplies and developing and implementing cost-effective water purification technologies in the NCP.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO