Your search found 11 records
1 Khan, A. R. 2001. Searching evidence for climatic change: Analysis of hydro-meteorological time series in the Upper Indus Basin. Lahore, Pakistan: International Water Management Institute (IWMI) iv, 31p. (IWMI Working Paper 023) [doi: https://doi.org/10.3910/2009.152]
Water resource management ; River basins ; Analysis ; Catchment areas ; Stream flow ; Data collection ; Models ; Time series ; hydrology ; Climate / Pakistan / Upper Indus Basin
(Location: IWMI-PAK Call no: IWMI 631.7.5 G730 KHA Record No: H028687)
http://www.iwmi.cgiar.org/Publications/Working_Papers/working/WOR23.pdf
(925 KB)
The study examines some of the major components of water cycle in the Upper Indus Basin (UIB) to look for evidence of climate change. An analysis of hydrometeorological data has been performed for UIB. An Additive Decomposition Model was used for analyzing the time series data from ten meteorological stations in the Mangla (Jhelum River) and the Tarbela (Indus River) catchments and the long-term flow data for the three major rivers, the Indus, Jhelum and Chenab. The model decomposes a time series into trend, cyclical or periodic, autoregressive and irregular components. Furthermore, spectral analysis is done in order to display these components of the time series and examine the results of the removal of the components. This approach makes use of the fact that a change in climate, if it has occurred, will have a magnified effect on hydrologic time series. By detecting trends in such series, it should be possible to work backwards and identify the causative climatic change. In case of flow data for the three rivers, which was available for a longer period than the meteorological data, the ‘F’ and ‘t’ tests for stability of variance and mean, respectively, were also performed. The annual cycle dominated all the temperature series i.e., large periodic components, and none explained by the periodic component and a dominant random component. In case of stream- flow data, the annual temperature cycle was dominant and no trend components were found in any of the flow series. The F-test and the t-test indicated the variances and means for different sub- periods of each flow series to be stable at 5% level of significance. The analysis of time series of river flows and associated climatic data did not find any pattern of trends likely to be caused by ‘greenhouse warming’ in the Upper Indus Basin.

2 Hussain, I.; Giordano, M. 2002. Case studies on agricultural water and poverty linkages in large and small systems: Some lessons for action. Paper presented at the Dhaka Meeting on “Water and Poverty Initiative” led by the Asian Development Bank, 22-26 September 2002, Dhaka. 18p.
Irrigation systems ; Poverty ; Manual pumps / South Asia / Sri Lanka / Pakistan / Vietnam / India / Walawe Left Bank System / Ruhuna Basin / Upper Indus Basin / Red River Delta / Nam Duong / Chaj Sub-Basin / Madhya Pradesh
(Location: IWMI-HQ Call no: IWMI Record No: H031184)

3 Arshad, M.; Ahmad, R. N.; Hanjra, M. A. 2012. Modeling crop water requirement in the Upper Indus Basin of Pakistan for enhancing food security. In Gorawala, P.; Mandhatri, S. (Eds.). Agricultural Research Updates. Vol.4. New York, NY: Nova Science Publishers. pp.181-194.
Water resources ; Land resources ; Crops ; Cropping systems ; Water requirements ; Water scarcity ; River Basins ; Developing countries ; Food security ; Irrigation water ; Irrigation systems ; Models ; Climatic data / Pakistan / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H046054)
https://vlibrary.iwmi.org/pdf/H046054.pdf
(0.33 MB)
Agricultural irrigation in the developing countries utilizes a huge quantity of diverted water. The scarcity of water is negatively linked to food security. Irrigation has been vital to food security and sustainable livelihoods, especially in the developing countries. The plains of Indus Basin of Pakistan are well suited for agriculture and can be productive at the level of potential yields. For the purpose of meeting food requirements of increasing population, the quantification of crop water requirement is essential for ensuring efficient use of available water. The estimation of crop water requirement is also important for setting benchmarks in designing irrigation scheduling and acreage decisions. To estimate the irrigation water requirements in the upper Indus Basin, the agriculture zones of Punjab including rice-wheat, mixed crop and cotton-wheat zone were selected. To calculate the crop water requirements, CROPWAT model was used employing local climatic data of the respective zones. In the rice-wheat zone, wheat, being a major crop of winter (Rabi) season, demands highest amount of water during the month of March followed by April and February. During summer (Kharif) season, sugarcane and rice are the major crops of the area. The both being high delta crops require more water than the Rabi crops. The major crops of the mixed crop zone are wheat, cotton, rice and sugarcane. The results indicate that the highest crop water requirement for Rabi season is in the month of April while the same is highest in July for the Kharif season. For the cotton-wheat zone, the major crops are wheat, cotton, rice and sugarcane. Cotton being the main crop of the zone requires a major share of water followed by wheat, rice and sugarcane. The result show that highest crop water requirement of the area during winter is again in April while July is the month of highest crop water requirement during summer season. In general, the crop water requirements have a spike during the summer season irrespective of the cropping zone. This puts huge pressure on the irrigation system due to higher water scarcity during the summer season. We conclude that crop water requirement mainly depend on the type of crops and cropped area under each crop. This implies that, changing the crop-mix and switching to low water requiring and drought resistance crop varieties can reduce crop water requirements and optimize food production through more efficient allocation and use of available water resources and thus make a sterling contribution towards achieving food security in Pakistan.

4 Wagener, T.; Franks, S.; Gupta, H. V.; Bogh, E.; Bastidas, L.; Nobre, C.; de Oliverira Galvao, C. (Eds.) 2005. Regional hydrological impacts of climatic change: impact assessment and decision making. Proceedings of the International Symposium on Regional Hydrological Impacts of Climate Variability and Change with an Emphasis on Less Developed Countries (S6) held during the 7th Scientific Assembly of the International Association of Hydrological Sciences (IAHS), Foz do Iguaco, Brazil, 3-9 April 2005. Part 1. Wallingford, UK: International Association of Hydrological Sciences (IAHS). 356p. (IAHS Publication 295)
Climate change ; Hydrological factors ; Impact assessment ; Decision making ; Agricultural development ; River basins ; Water resources ; Water management ; Coastal area ; Stream flow ; Catchment areas ; Semiarid climate ; Lakes ; Population growth ; Air pollution ; Land cover change ; Hydroelectric schemes ; Flooding ; Evapotranspiration ; Watersheds ; GIS ; Arid zones ; Semiarid zones ; Sea water ; Water temperature ; Alluvial aquifers ; Models ; Satellite observation ; Forecasting ; Afforestation ; El Nino-Southern Oscillation ; Case studies / South America / North America / Europe / Africa / Asia / Brazil / Argentina / USA / Greece / Balkan Peninsula / West Africa / Benin / Cameroon / Lebanon / Nepal / Pakistan / India / China / Western Australia / Northeast Brazil / Trinidad / Vietnam / Eastern Australia / La Plata Basin / Taquari River Basin / Patagonia / Aliakmon River Basin / Black Sea / Volta Basin / Logone-Chari Plain / Himalayan Basin / Upper Indus Basin / Ganga Basin / Damodar River Basin / Yellow River Basin / Susannah Brook / Nordeste / St. Joseph Watershed / Himalayas / Red River Basin / Indian Ocean
(Location: IWMI HQ Call no: 577.22 G000 WAG Record No: H046622)
http://vlibrary.iwmi.org/pdf/H046622_TOC.pdf
(0.44 MB)

5 Mukhopadhyay, B.; Khan, A. 2015. A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. Journal of Hydrology, 527:119-132. [doi: https://doi.org/10.1016/j.jhydrol.2015.04.045]
Climate change ; Glaciers ; Snowmelt ; River basins ; Flow discharge ; Watersheds ; Hydrological regime ; Valuation ; Temperature / Pakistan / Upper Indus Basin / Western Himalayas / Karakoram Mountains / Hindu Kush Region
(Location: IWMI HQ Call no: e-copy only Record No: H047441)
https://vlibrary.iwmi.org/pdf/H047441.pdf
(5.03 MB)
The hydrograph separation method, previously proposed to quantify base flow, seasonal snowmelt, and glacial melt components in river flows within Upper Indus basin underestimates glacial melt component. This is particularly limiting for highly glacierized watersheds. The limitation has been corrected by a further refinement of the method. The results with the refined procedure are highly consistent with the physical characteristics such as hypsometry and glacier extents of the watershed even though the method itself is completely independent of the physical characteristics of the watershed where it is applied. Glacial melt far outweigh snowmelt in the rivers draining the Karakoram and Zanskar ranges. In the Karakoram, on an annualized basis, glacial melt proportion varies from 43% to 50% whereas snowmelt varies from 27% to 31%. On the other hand, snowmelt dominates over glacial melt in the rivers draining the western Greater Himalayas and the Hindu Kush. Here snowmelt percentage in river discharge varies from 31% to 53% whereas that of glacial melt ranges from 16% to 30%. In the main stem of Upper Indus River, snowmelt fraction in most cases is slightly greater than the glacial melt fraction. In the main stem, snowmelt percentage ranges from 35% to 44% whereas glacial melt percentage ranges from 25% to 36%. Upper Indus River just upstream of Tarbela Reservoir carries annual flows constituted of 70% melt water of which 26% is contributed by glacial melts and 44% by snowmelts. We also show that during the later part of twentieth century and continuing into the early part of twenty first century glacial melt contributions to river discharge has decreased compared to the previous decades. This phenomenon can be ascribed to either basin wide loss of glacial mass in the recent decades in the elevation range from where most of the glacial melt originates or glacier growth and stability due to either reduction in energy inputs or increase in precipitation or both at the high altitude bands wherefrom glacial melt water originates.

6 Khan, A.; Richards, K. S.; McRobie, A.; Fischer, G.; Wiberg, D.; Burek, P.; Satoh, Y. 2016. Accuracy assessment of ISI-MIP modelled ows in the Hidukush-Karakoram-Himalayan basins [Abstract only] Paper presented at the European Geosciences Union (EGU) General Assembly, Vienna, Austria, 17-22 April 2016. 1p.
Mountain ranges ; Glaciers ; Meltwater ; Climate change ; Stream flow ; Energy generation ; Hydrology ; Models ; River basins ; Precipitation / Afghanistan / Pakistan / China / India / Tajikistan / Hindu Kush / Karakoram / Himalayan Region / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H047865)
https://vlibrary.iwmi.org/pdf/H047865.pdf

7 Hussain, A.; Rasul, G.; Mahapatra, B.; Tuladhar, S. 2016. Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Security, 8(5):921-937. [doi: https://doi.org/10.1007/s12571-016-0607-5]
Climate change adaptation ; Household food security ; Food consumption ; Farming systems ; Agricultural production ; Cash crops ; Livestock ; Income ; Environmental effects ; Flooding ; Landslides ; Temperature ; Drought ; Rain ; Socioeconomic environment ; Living standards ; Migration ; Mountains ; River basins / India / Nepal / Pakistan / China / Hindu-Kush Himalayan Region / Upper Indus Basin / Koshi Basin / Eastern Brahmaputra Basin / Salween Basin / Mekong Basin
(Location: IWMI HQ Call no: e-copy only Record No: H047993)
http://link.springer.com/content/pdf/10.1007%2Fs12571-016-0607-5.pdf
https://vlibrary.iwmi.org/pdf/H047993.pdf
(1.09 MB) (1.09 MB)
This study attempts to understand local people’s perceptions of climate change, its impacts on agriculture and household food security, and local adaptation strategies in the Hindu-Kush Himalayan (HKH) region, using data from 8083 households (HHs) from four river sub-basins (SBs), i.e. Upper Indus (Pakistan), Eastern Brahmaputra (India), Koshi (Nepal) and Salween and Mekong (China). The majority of households in SBs, in recent years, have perceived that there have been more frequent incidences of floods, landslides, droughts, livestock diseases and crop pests, and have attributed these to climate change. These changes have led to low agricultural production and income, particularly in Eastern Brahmaputra (EB) where a substantial proportion of HHs reported a decline in the production of almost all staple and cash crops, resulting in very low farm income. Consequently, households’ dependency on external food items supplied from plain areas has increased, particularly in the Upper Indus (UI) and EB. After hazards, households face transitory food insecurity owing to damage to their local food systems and livelihood sources, and constrained food supply from other areas. To cope with these, HHs in SBs make changes in their farming practices and livestock management. In EB, 11 % of HHs took on new off-farm activities within the SB and in SM, 23 % of HHs chose out-migration as an adaptation strategy. Lastly, the study proposes policy instruments for attaining sustainable food security, based on agro-ecological potential and opportunities for increasing agricultural resilience and diversity of livelihoods.

8 Rao, M. P.; Cook, E. R.; Cook, B. I.; Palmer, J. G.; Uriarte, M.; Devineni, N.; Lall, U.; D’Arrigo, R. D.; Woodhouse, C. A.; Ahmed, M.; Zafar, M. U.; Khan, N.; Khan, A.; Wahab, M. 2018. Six centuries of Upper Indus Basin streamflow variability and its climatic drivers. Water Resources Research, 54(8):5687-5701. [doi: https://doi.org/10.1029/2018WR023080]
River basins ; Stream flow ; Climatic factors ; Temperature ; Precipitation ; Discharges ; Forecasting ; Models ; Regression analysis ; Principal component analysis / Pakistan / Upper Indus Basin / Partab Bridge / Doyian / Gilgit / Kachora
(Location: IWMI HQ Call no: e-copy only Record No: H048920)
https://vlibrary.iwmi.org/pdf/H048920.pdf
(3.32 MB)
Our understanding of the full range of natural variability in streamflow, including how modern flow compares to the past, is poorly understood for the Upper Indus Basin because of short instrumental gauge records. To help address this challenge, we use Hierarchical Bayesian Regression with partial pooling to develop six centuries long (1394–2008 CE) streamflow reconstructions at three Upper Indus Basin gauges (Doyian, Gilgit, and Kachora), concurrently demonstrating that Hierarchical Bayesian Regression can be used to reconstruct short records with interspersed missing data. At one gauge (Partab Bridge), with a longer instrumental record (47 years), we develop reconstructions using both Bayesian regression and the more conventionally used principal components regression. The reconstructions produced by principal components regression and Bayesian regression at Partab Bridge are nearly identical and yield comparable reconstruction skill statistics, highlighting that the resulting tree ring reconstruction of streamflow is not dependent on the choice of statistical method. Reconstructions at all four reconstructions indicate that flow levels in the 1990s were higher than mean flow for the past six centuries. While streamflow appears most sensitive to accumulated winter (January–March) precipitation and summer (May–September) temperature, with warm summers contributing to high flow through increased melt of snow and glaciers, shifts in winter precipitation and summer temperatures cannot explain the anomalously high flow during the 1990s. Regardless, the sensitivity of streamflow to summer temperatures suggests that projected warming may increase streamflow in coming decades, though long-term water risk will additionally depend on changes in snowfall and glacial mass balance.

9 Ougahi, J. H.; Cutler, M. E. J.; Cook, S. J. 2021. Modelling climate change impact on water resources of the Upper Indus Basin. Journal of Water and Climate Change, 23p. (Online first) [doi: https://doi.org/10.2166/wcc.2021.233]
Water resources ; River basins ; Climate change ; Hydrological modelling ; Precipitation ; Temperature ; Water balance ; Evapotranspiration ; Water yield ; Forecasting ; Soil moisture ; Parameters ; Calibration ; Uncertainty / Pakistan / Upper Indus Basin / Upper Jhelum River Basin / Kabul River Basin / Himalaya / Hindu Kush / Karakoram / Tarbela / Mangla / Nowshera
(Location: IWMI HQ Call no: e-copy only Record No: H050862)
https://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.233/980841/jwc2021233.pdf
https://vlibrary.iwmi.org/pdf/H050862.pdf
(1.47 MB) (1.47 MB)
Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to -28%), and even larger for seasonal precipitation (+91 to -48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: -16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.

10 Orr, A.; Ahmad, B.; Alam, U.; Appadurai, A. N.; Bharucha, Z. P.; Biemans, H.; Bolch, T.; Chaulagain, N. P.; Dhaubanjar, S.; Dimri, A. P.; Dixon, H.; Fowler, H. J.; Gioli, G.; Halvorson, S. J.; Hussain, A.; Jeelani, G.; Kamal, S.; Khalid, I. S.; Liu, S.; Lutz, A.; Mehra, M. K.; Miles, E.; Momblanch, A.; Muccione, V.; Mukherji, Aditi; Mustafa, D.; Najmuddin, O.; Nasimi, M. N.; Nusser, M.; Pandey, V. P.; Parveen, S.; Pellicciotti, F.; Pollino, C.; Potter, E.; Qazizada, M. R.; Ray, S.; Romshoo, S.; Sarkar, S. K.; Sawas, A.; Sen, S.; Shah, A.; Ali Shah, M. Azeem; Shea, J. M.; Sheikh, A. T.; Shrestha, A. B.; Tayal, S.; Tigala, S.; Virk, Z. T.; Wester, P.; Wescoat, J. L. Jr. 2022. Knowledge priorities on climate change and water in the Upper Indus Basin: a horizon scanning exercise to identify the top 100 research questions in social and natural sciences. Earth's Future, 10(4):e2021EF002619. [doi: https://doi.org/10.1029/2021EF002619]
Climate change adaptation ; Water resources ; Water management ; Water availability ; River basins ; Governance ; Policies ; Sustainability ; Livelihoods ; Vulnerability ; Poverty ; Socioeconomic aspects ; Gender ; Agriculture ; Natural disasters ; Hydroclimatology ; Ecosystems ; Glaciers ; Mountains / Pakistan / India / China / Afghanistan / Hindu-Kush Karakoram Himalaya Region / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051443)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021EF002619
https://vlibrary.iwmi.org/pdf/H051443.pdf
(2.20 MB) (2.20 MB)
River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of “governance, policy, and sustainable solutions”, “socioeconomic processes and livelihoods”, and “integrated Earth System processes”. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them.

11 Ali, Zeshan; Iqbal, M.; Khan, I. U.; Masood, M. U.; Umer, M.; Lodhi, M. U. K.; Tariq, M. A. U. R. 2023. Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan. Journal of Mountain Science, 20(8):2263-2281. [doi: https://doi.org/10.1007/s11629-022-7872-x]
Climate prediction ; Climate change ; Hydrological modelling ; River basins ; Watersheds ; Stream flow ; Runoff ; Climate models ; Forecasting ; Precipitation ; Temperature / Pakistan / Astore River Basin / Upper Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H052158)
https://link.springer.com/content/pdf/10.1007/s11629-022-7872-x.pdf?pdf=button
https://vlibrary.iwmi.org/pdf/H052158.pdf
(5.27 MB) (5.27 MB)
Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes. Understanding how these climatic changes affect watershed hydrology is essential for human society and environmental processes. Coupled Model Intercomparison Project phase 6 (CMIP6) dataset of three GCM’s (BCC-CSM2-MR, INM-CM5-0, and MPI-ESM1-2-HR) with resolution of 100 km has been analyzed to examine the projected changes in temperature and precipitation over the Astore catchment during 2020–2070. Bias correction method was used to reduce errors. In this study, statistical significance of trends was performed by using the Man- Kendall test. Sen’s estimator determined the magnitude of the trend on both seasonal and annual scales at Rama Rattu and Astore stations. MPI-ESM1-2-HR showed better results with coefficient of determination (COD) ranging from 0.70–0.74 for precipitation and 0.90–0.92 for maximum and minimum temperature at Astore, Rama, and Rattu followed by INM-CM5-0 and BCC-CSM2-MR. University of British Columbia Watershed model was used to attain the future hydrological series and to analyze the hydrological response of Astore River Basin to climate change. Results revealed that by the end of the 2070s, average annual precipitation is projected to increase up to 26.55% under the SSP1–2.6, 6.91% under SSP2–4.5, and decrease up to 21.62% under the SSP5–8.5. Precipitation also showed considerable variability during summer and winter. The projected temperature showed an increasing trend that may cause melting of glaciers. The projected increase in temperature ranges from - 0.66°C to 0.50°C, 0.9°C to 1.5°C and 1.18°C to 2°C under the scenarios of SSP1–2.6, SSP2–4.5 and SSP5–8.5, respectively. Simulated streamflows presented a slight increase by all scenarios. Maximum streamflow was generated under SSP5–8.5 followed by SSP2–4.5 and SSP1–2.6. The snowmelt and groundwater contributions to streamflow have decreased whereas rainfall and glacier melt components have increased on the other hand. The projected streamflows (2020–2070) compared to the control period (1990–2014) showed a reduction of 3%–11%, 2%–9%, and 1%–7% by SSP1–2.6, SSP2–4.5, and SSP5–8.5, respectively. The results revealed detailed insights into the performance of three GCMs, which can serve as a blueprint for regional policymaking and be expanded upon to establish adaption measures.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO