Your search found 2 records
1 Barnes, P.. 1993. Ground broken on watershed project to protect Shavano Valley. Irrigation Journal, 43(4):18-19.
Watershed management ; Flood control ; Dams ; Soil conservation / USA / Colorado
(Location: IWMI-HQ Call no: PER Record No: H013284)

2 Amarasinghe, P.; Liu, A.; Egodawatta, P.; Barnes, P.; McGree, J.; Goonetilleke, A. 2016. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change. Journal of Hydrology, 540:1043-1052. [doi: https://doi.org/10.1016/j.jhydrol.2016.07.021]
Water supply ; Water distribution systems ; Water security ; Resilience ; Indicators ; Quantitative analysis ; Climate change ; Rainfall patterns ; Reservoir storage ; Simulation models ; Case studies / Australia / Queensland
(Location: IWMI HQ Call no: e-copy only Record No: H047640)
https://vlibrary.iwmi.org/pdf/H047640.pdf
(1.40 MB)
A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system’s stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO