Your search found 5 records
1 Sharp, D.; Graham, M.. (Eds.) 1982. Village handpump technology: Research and evaluation in Asia. Ottawa, Canada: IDRC. 72 p. (IDRC - 204e)
Pumps ; Appropriate technology ; Water supply ; Developing countries ; Project appraisal ; Economic aspects ; Case studies / Asia
(Location: IWMI-HQ Call no: 621.64 G570 SHA Record No: H01316)

2 Dickens, Chris; O’Brien, G.; Stassen, R.; Eriyagama, Nishadi; Kleynhans, M.; Rowntree, K.; Graham, M.; Ross-Gillespie, V.; MacKenzie, J.; Wymenga, E.; Mapedza, Everisto; Burnet, M.; Desai, M.; Hean, J. 2018. E-flows for the Upper Niger River and Inner Niger Delta: synthesis report. [Project report prepared by the International Water Management Institute for Wetlands International]. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 201p.
Environmental flows ; Rivers ; Deltas ; Water resources ; Aquatic ecosystems ; Monitoring ; Risk assessment ; Ecosystem services ; Habitats ; Invertebrates ; Birds ; Manatees ; Fisheries ; Floodplains ; Dams ; Sediment ; Water quality ; Flow discharge ; Vegetation ; Indicators ; Geomorphology ; Living standards ; Social aspects ; Ecological factors ; Hydrodynamics ; Modelling ; Case studies / West Africa / Mali / Niger / Upper Niger River / Inner Niger Delta / Bani River
(Location: IWMI HQ Call no: e-copy only Record No: H049434)
https://vlibrary.iwmi.org/pdf/H049434.pdf
(13.80 MB)

3 Dickens, Chris; O’Brien, G.; Stassen, R.; Eriyagama, Nishadi; Kleynhans, M.; Rowntree, K.; Graham, M.; Ross-Gillespie, V. 2018. E-flows for the Upper Niger and Inner Niger Delta: specialist reports - hydrology, hydraulics, geomorphology and water quality. [Project report prepared by the International Water Management Institute for Wetlands International]. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 210p.
Environmental flows ; Hydrology ; Hydraulics ; Geomorphology ; Water quality ; River basins ; Deltas ; Water resources ; Freshwater ; Surface water ; Groundwater ; Flow discharge ; Flooding ; Catchment areas ; Dams ; Sediment ; Habitats ; Risk assessment ; Climate change ; Hydrodynamics ; Land use ; Mining ; Population density ; Models / West Africa / Mali / Upper Niger River / Inner Niger Delta / Bani River / Sankarani River / Dialakoro / Gouala / Koulikoro / Ke Macina / Djenne / Koryoume
(Location: IWMI HQ Call no: e-copy only Record No: H049435)
https://vlibrary.iwmi.org/pdf/H049435.pdf
(16.40 MB)

4 Dickens, Chris; O’Brien, G.; Stassen, R.; Eriyagama, Nishadi; Kleynhans, M.; Rowntree, K.; Graham, M.; Ross-Gillespie, V.; MacKenzie, J.; Wymenga, E.; Mapedza, Everisto; Burnet, M.; Desai, M.; Hean, J. 2018. E-Flows for the Upper Niger River and Inner Niger Delta: specialist response report for vegetation, fish, invertebrates and birds. [Project report prepared by the International Water Management Institute for Wetlands International]. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 104p.
Environmental flows ; Vegetation ; Fisheries ; Invertebrates ; Birds ; Ecosystem services ; Aquatic environment ; Habitats ; Biodiversity ; Rivers ; Deltas ; Living standards ; Public health ; Waterborne diseases ; Risk assessment ; Malaria ; Onchocerciasis ; Parasites ; Pathogens ; Vectors ; Sanitation ; Water resources ; Water quality ; Floodplains ; Sediment ; Modelling / West Africa / Upper Niger River / Inner Niger Delta
(Location: IWMI HQ Call no: e-copy only Record No: H049436)
https://vlibrary.iwmi.org/pdf/H049436.pdf
(5.46 MB)

5 Taylor, J.; Graham, M.; Louw, A.; Lepheana, A.; Madikizela, B.; Dickens, Chris; Chapman, D. V.; Warner, S. 2022. Social change innovations, citizen science, miniSASS and the SDGs. Water Policy, 24(5):708-717. [doi: https://doi.org/10.2166/wp.2021.264]
Social change ; Innovation ; Citizen science ; Sustainable Development Goals ; Goal 6 Clean water and sanitation ; Stakeholders ; Water quality ; Monitoring / South Africa
(Location: IWMI HQ Call no: e-copy only Record No: H050675)
https://iwaponline.com/wp/article-pdf/24/5/708/1050904/024050708.pdf
https://vlibrary.iwmi.org/pdf/H050675.pdf
(0.46 MB) (475 KB)
The United Nations Sustainable Development Goals (SDGs) describe a course of action to address poverty, protect the planet and ensure prosperity for all (https://sdgs.un.org/goals). More specifically, SDG 6 clarifies how water quality, quantity and access are crucial to human well-being, and yet human activities are compromising water resources through over-exploitation, pollution, as well as contributing to the spread of disease. Globally aquatic ecosystems are highly threatened and concerted efforts by governments and civil society to ‘turn the situation around’ are simply not working. Human-created problems require human-centred solutions and these require different ways of thinking and acting to those behaviour patterns that are contributing to the challenges. In this paper, we first consider causal approaches to attitude change and behaviour modification that are simply not working as intended. We then explore enabling responses such as citizen science and co-engaged action learning as more tenable alternatives. SDG 6 has a focus on clean water and sanitation for all. The SDGs further clarify how the extent to which this goal can be realized depends, to a large extent, on stakeholder engagements and education. Through stakeholder engagements and educational processes, people can contribute towards SDG 6 and the specific indicator and target in SDG 6.b – Stakeholder participation. Following a three-year research process, that investigated a wide range of participatory tools, this paper explores how the Stream Assessment Scoring System (miniSASS; www.minisass.org) can enable members of the public to engage in water quality monitoring at a local level. The paper continues to demonstrate how miniSASS can contribute to the monitoring of progress towards Sustainable Development Goal Target 6.3, by providing a mechanism for data collection indicator 6.3.2. miniSASS is proving popular in southern Africa as a methodology for engaging stakeholder participation in water quality monitoring and management. The technique costs very little to implement and can be applied by children and scientists alike. As a biomonitoring approach, it is based on families of macroinvertebrates that are present in most perennial rivers of the world. The paper concludes by describing how useful the miniSASS technique can be for addressing data gaps for SDG 6.3.2 reporting, and that it can be applied in most regions of the world.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO