Your search found 15 records
1 Thorburn, P. J.; Rose, C. W.; Shaw, R. J.; Yule, D. F. 1990. Interpretation of solute profile dynamics in irrigated soils: I - Mass balance approach. Irrigation Science, 11(4):199-207.
Irrigated soils ; Soil salinity ; Leaching / Australia
(Location: IWMI-HQ Call no: PER Record No: H06884)

2 Thorburn, P. J.; Rose, C. W.; Yule, D. F. 1990. Interpretation of solute profile dynamics of irrigated soils: II - Convective-dispersive approach. Irrigation Science, 11(4):209-217.
Irrigated soils ; Soil salinity ; Leaching
(Location: IWMI-HQ Call no: PER Record No: H06885)

3 Thorburn, P. J.. 1990. Interpretation of solute profile dynamics in irrigated soils: III - A simple model of bypass flow in soils. Irrigation Science, 11(4):219-225.
Irrigated soils ; Soil salinity ; Infiltration / Australia
(Location: IWMI-HQ Call no: PER Record No: H06886)

4 Thorburn, P. J.; Walker, G. R.; Jolly, I. D. 1995. Uptake of saline groundwater by plants: An analytical model for semi-arid and arid areas. Plant and Soil, 175:1-11.
Eucalyptus ; Groundwater ; Salinity ; Water quality ; Soil-water-plant relationships ; Models ; Simulation ; Water table ; Sensitivity analysis ; Leaching ; Water balance / Australia / Murray River / Chowilla
(Location: IWMI-HQ Call no: P 4264 Record No: H018715)

5 Cramer, V. A.; Thorburn, P. J.; Fraser, G. W. 1999. Transpiration and groundwater uptake from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline areas of southeast Queensland, Australia. Agricultural Water Management, 39(2/3):187-204.
Water table ; Salinity ; Groundwater ; Discharges ; Eucalyptus ; Soil-water-plant relationships ; Agroforestry ; Models / Australia / Queensland
(Location: IWMI-HQ Call no: PER Record No: H023941)

6 Zhang, L.; Dawes, W. R.; Slavich, P. G.; Meyer, W. S.; Thorburn, P. J.; Smith, D. J.; Walker, G., R. 1999. Growth and ground water uptake responses of lucerne to changes in groundwater levels and salinity: Lysimeter, isotope and modelling studies. Agricultural Water Management, 39(2/3):265-282.
Groundwater ; Soil water ; Salinity ; Water table ; Plant growth ; Evapotranspiration ; Water use ; Lysimetry ; Simulation models ; Soil moisture / Australia / River Murray
(Location: IWMI-HQ Call no: PER Record No: H023945)

7 Thorburn, P. J.; Cook, F. J.; Bristow, K. L. 2002. New water-saving production technologies: Advances in trickle irrigation. In Yajima, M.; Okada, K.; Matsumoto, N. (Eds.), Water for sustainable agriculture in developing regions û More crop for every scarce drop: Proceedings of the 8th JIRCAS International Symposium, Tsukuba, 27-28 November 2001. Ibaraki, Japan: JIRCAS. pp.53-62.
Drip irrigation ; Water conservation ; Fertigation ; Irrigation efficiency ; Crop production
(Location: IWMI-HQ Call no: 631.7.2 G000 YAJ Record No: H031513)

8 Thorburn, P. J.; Bristow, K. L.; Annandale, J. G. 2003. Micro-irrigation: Advances in system design and management: Introduction. Irrigation Science, 22(3-4):105-106.
Irrigation systems ; Small scale systems
(Location: IWMI-HQ Call no: PER Record No: H033545)

9 Thorburn, P. J.; Cook, F. J.; Bristow, K. L. 2003. Soil-dependent wetting from trickle emitters: Implications for system design and management. Irrigation Science, 22(3-4):121-127.
Drip irrigation ; Water use efficiency ; Irrigation efficiency ; Soil texture / Australia
(Location: IWMI-HQ Call no: PER Record No: H033547)

10 Cook, F. J.; Thorburn, P. J.; Fitch, P.; Bristow, K. L. 2003. WetUp: A software tool to display approximate wetting patterns from drippers. Irrigation Science, 22(3-4):129-134.
Drip irrigation ; Computer software
(Location: IWMI-HQ Call no: PER Record No: H033548)

11 Cote, C. M.; Bristow, K. L.; Charlesworth, P. B.; Cook, F. J.; Thorburn, P. J.. 2003. Analysis of soil wetting and solute transport in subsurface trickle irrigation. Irrigation Science, 22(3-4):143-156.
Drip irrigation ; Soil properties ; Soil texture ; Simulation models
(Location: IWMI-HQ Call no: PER Record No: H033550)

12 Thorburn, P. J.; Dart, I. K.; Biggs, I. M.; Baillie, C. P.; Smith, M. A.; Keating, B. A. 2003. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science, 22(3-4):201-209.
Drip irrigation ; Fertigation ; Nitrogen ; Sugarcane / Australia
(Location: IWMI-HQ Call no: PER Record No: H033556)

13 Hurst, C. A.; Thorburn, P. J.; Lockington, D.; Bristow, K. L. 2004. Sugarcane water use from shallow water tables: Implications for improving irrigation water use efficiency. Agricultural Water Management, 65(1):1-19.
Sugarcane ; Water table ; Irrigation efficiency ; Water use efficiency ; Evapotranspiration ; Groundwater ; Water balance / Australia
(Location: IWMI-HQ Call no: PER Record No: H034194)
https://vlibrary.iwmi.org/pdf/H_34194.pdf

14 Stewart, L. K.; Charlesworth, P. B.; Bristow, K. L.; Thorburn, P. J.. 2006. Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agricultural Water Management, 81(3):315-334.
Drainage ; Nitrogen ; Leaching ; Groundwater ; Sugarcane ; Models ; Water balance ; Soil water ; Runoff ; Evapotranspiration ; Irrigated farming
(Location: IWMI-HQ Call no: PER Record No: H038540)

15 Asseng, S.; Ewert, F.; Martre, P.; Rotter, R. P.; Lobell, D. B.; Cammarano, D.; Kimball, B. A.; Ottman, M. J.; Wall, G. W.; White, J. W.; Reynolds, M. P.; Alderman, P. D.; Prasad, P. V. V.; Aggarwal, Pramod Kumar; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A. J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L. A.; Izaurralde, R. C.; Jabloun, M.; Jones, C. D.; Kersebaum, K. C.; Koehler, A-K.; Muller, C.; Kumar, S. N.; Nendel, C.; O’Leary, G.; Olesen, J. E.; Palosuo, T.; Priesack, E.; Rezaei, E. E.; Ruane, A. C.; Semenov, M. A.; Shcherbak, I.; Stockle, C.; Stratonovitch, P.; Streck, T.; Supit, I; Tao, F.; Thorburn, P. J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5:143-147. [doi: https://doi.org/10.1038/nclimate2470]
Climate change ; Temperature ; Adaptation ; Models ; Crop production ; Wheats ; Food production
(Location: IWMI HQ Call no: e-copy only Record No: H046906)
https://vlibrary.iwmi.org/pdf/H046906.pdf
Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO