Your search found 2 records
1 Shi, Y.; Yang, S.; Chen, W.; Wang, X.; Feng, C. 2023. Research on the construction of a human-water harmony model in the Yellow River Basin. Water Policy, 25(7):742-757. [doi: https://doi.org/10.2166/wp.2023.130]
Research ; Water resources ; Models ; Water use ; Urbanization ; Indicators ; Economic development ; Pollution / China / Yellow River Basin / Henan
(Location: IWMI HQ Call no: e-copy only Record No: H052066)
https://iwaponline.com/wp/article-pdf/25/7/742/1263850/025070742.pdf
https://vlibrary.iwmi.org/pdf/H052066.pdf
(0.93 MB) (952 KB)
Human-water harmony in the Yellow River Basin has an important influence on promoting ecological protection and high-quality development in the Yellow River Basin. This paper explores the degree of harmony between humans and water in the provinces of the Yellow River Basin. Based on the provincial-level data of nine provinces from 2001 to 2020, a human-water harmonious coupling coordination degree model was constructed, and the spatial and temporal analysis of the coupling coordination characteristics of nine provinces was carried out utilizing ArcGIS software. The results revealed that: (1) From the point of view of human-water harmony, from 2001 to 2020, China's human-water relationship was on the rise, from reluctant coupling coordination to good coupling coordination. (2) Qinghai, Gansu, and Sichuan provinces have the most significant increase in human-water harmony, from on the verge of a dysfunctional decline to quality coupling coordination. (3) From 2001 to 2011, the human system's comprehensive index was inferior to that of the water system's comprehensive index. In 2003, the comprehensive index of human and water systems was the largest. From 2012 to 2020, the human system's comprehensive index was higher than the water system. However, in 2015, the two indices diverged significantly

2 He, Q.; Liu, De L.; Wang, B.; Wang, Z.; Cowie, A.; Simmons, A.; Xu, Z.; Li, L.; Shi, Y.; Liu, K.; Harrison, M. T.; Waters, C.; Huete, A.; Yu, Q. 2024. A food-energy-water-carbon nexus framework informs region-specific optimal strategies for agricultural sustainability. Resources, Conservation and Recycling, 203:107428. (Online first) [doi: https://doi.org/10.1016/j.resconrec.2024.107428]
Sustainable agriculture ; Strategies ; Nexus approaches ; Carbon footprint ; Carbon sequestration ; Water use ; Energy ; Food production ; Greenhouse gas emissions ; Profitability ; Cover plants ; Cropping systems ; Crop production ; Cash crops ; Sorghum ; Wheat ; Chickpeas ; Crop rotation ; Crop yield ; Water footprint ; Rainfall / Australia / New South Wales
(Location: IWMI HQ Call no: e-copy only Record No: H052623)
https://vlibrary.iwmi.org/pdf/H052623.pdf
(7.12 MB)
Agricultural sustainability is threatened by pressures from water scarcity, energy crises, escalating greenhouse gas (GHG) emissions, and diminishing farm profitability. Practices that diversify crop rotations, retain crop residues, and incorporate cover crops have been widely studied for their impacts on soil organic carbon and crop production. However, their associated usage of natural resources and economic returns have been overlooked. Here, we employed a food-energy-water-carbon (FEWC) nexus framework to assess the sustainability of crop rotations plus various management strategies across three sub-regions of New South Wales (NSW) in Australia. We found that compared with residue burning and fallowing, residue retention and cover cropping contributed to GHG abatement, but the latter consumed more energy and water per hectare. The composite sustainability scores, calculated with the FEWC framework, suggested that legume-inclusive rotations were generally more sustainable. Furthermore, in northern NSW (with existing sorghum/wheat/chickpea/wheat rotation), residue retention with cover cropping was most suitable combination, while the use of residue retention with fallow yielded greater benefits in southern NSW (with existing wheat/field pea/wheat/canola rotation). Regional disparities in climate, soil, cropping systems, and on-farm costs prompted region-specific strategies to address the unbalanced distribution among FEWC domains. Our study provides assessments for identifying feasible management practices to advance agricultural sustainability.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO