Your search found 5 records
1 Ye, B.; Yu, L.. 1993. Generating noninferior set of a multiobjective quadratic programming and its application to water resources problem. In Tingsanchali, T. (Ed.), Proceedings of the International Conference on Environmentally Sound Water Resources Utilization, Bangkok, Thailand, 8-11 November 1993. Vol.1. Bangkok, Thailand: AIT. pp.II-296-303.
Water resource management ; Water resources development ; Reservoirs ; Models
(Location: IWMI-HQ Call no: 333.91 G000 TIN Record No: H015810)

2 Yu, L.; Kejian, F.; Xianglong, L.; Shixia, S.; Qing, Z. 2003. Situation and countermeasures of the Yellow River Basin water resources protection. In Yellow River Conservancy Commission. Proceedings, 1st International Yellow River Forum on River Basin Management – Volume I. Zhengzhou, China: The Yellow River Conservancy Publishing House. pp.362-370.
River basin development ; Water resource management ; Water pollution ; Pollution control ; Water law / China / Yellow River
(Location: IWMI-HQ Call no: 333.91 G592 YEL Record No: H033808)

3 Zuo, Q.; Wu, Q.; Yu, L.; Li, Y.; Fan, Y. 2021. Optimization of uncertain agricultural management considering the framework of water, energy and food. Agricultural Water Management, 253:106907. [doi: https://doi.org/10.1016/j.agwat.2021.106907]
Agricultural production ; Water management ; Water resources ; Energy resources ; Food security ; Nexus ; Surface water ; Water supply ; Resource allocation ; Decision making ; Pesticides ; Fertilizers ; Crops ; Uncertainty ; Models / China / Henan
(Location: IWMI HQ Call no: e-copy only Record No: H050414)
https://vlibrary.iwmi.org/pdf/H050414.pdf
(10.60 MB)
Synergetic development of water, energy and food is prerequisite for coping with issues of increment of global population, deterioration of ecological environment and aggravation of climate change. This study aims to develop a scenario-based type-2 fuzzy interval programming (STFIP) approach for planning agricultural water, energy and food (WEF) as well as crop area management. Uncertainties presented as interval numbers, scenarios and fuzzy sets as well as the dual uncertainties (i.e. interval-scenario and type-2 fuzzy interval) can be effectively tackled by the STFIP method. Then, a STFIP-WEFN model is developed and applied to maximize net agricultural profit with integrated management of productive resources for Henan Province, China. Solutions of different water resources, diverse energy resources and multiple agricultural crops in association with various water supply structures between current situation and future policy orientation are examined. Results disclose that: over the entire planning horizon, a) the total planting area of crops can increase from [129.3, 133.6] × 103 km2 to [132.0, 135.6] × 103 km2 by optimizing resources allocation; b) uncertainties existing in the WEFN system can lead to a change rate of the system benefit by 16.93%; c) the total planting area can increase by [4.00, 6.05] % when the groundwater ratio changes from 40% to 55%. These findings can help effectively optimize the existing planting structure and coordinate the development of Henan Province among water, energy, food, economy, society and environment.

4 Li, M.; Li, H.; Fu, Q.; Liu, D.; Yu, L.; Li, T. 2021. Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change. Agricultural Systems, 192:103201. [doi: https://doi.org/10.1016/j.agsy.2021.103201]
Water resources ; Land resources ; Food security ; Energy ; Nexus ; Agroforestry systems ; Climate change ; Water allocation ; Water supply ; Water use efficiency ; Irrigation water ; Greenhouse gas emissions ; Carbon footprint ; Sustainable Development Goals ; Models / China / Heilongjiang
(Location: IWMI HQ Call no: e-copy only Record No: H050518)
https://vlibrary.iwmi.org/pdf/H050518.pdf
(6.00 MB)
CONTEXT: Agroforestry systems are widely promoted for their economic and environmental benefits. Food, energy, water and land resources in agroforestry systems are inextricably intertwined and expected to be severely impacted by climate change. Socioeconomic development and increasing populations have posed unique challenges for meeting the demand for food, energy, water and land, and the challenge will become more pressing under projected resource shortages and eco-environmental deterioration. Thus, a method of optimizing and sustainably managing the water-land-food-energy nexus in agroforestry systems under climate change must be developed.
OBJECTIVE: This paper develops an optimization model framework for the sustainable management of limited water-land-food-energy resources in agroforestry systems under climate change. The aims are to (1) quantify the interactions and feedbacks within water, land, food and energy subsystems; (2) provide trade-offs among water and energy utilization efficiency, economic benefits and environmental protection in agroforestry systems; and (3) generate optimal policy options among water and land resources for different crops and woodlands in different regions under different climate change patterns.
METHODS: The model framework is based on multiobjective fractional programming, and compromise programming is used to solve it. Climate change patterns are obtained from atmospheric circulation models and representative concentration pathways. The above aims are investigated through an actual nexus management problem in northeast China. Spatiotemporal meteorological and report-based databases, life cycle assessments, Pearson correlation analyses, data envelopment analyses and analytic hierarchy processes are integrated to realize practical application.
RESULTS AND CONCLUSIONS: The results show that climate variation will change the water and land allocation patterns and these changes will be more pronounced for major grain-producing areas. The optimized water allocation decreased (especially for rice, e.g., the optimal average value of the irrigation quota of rice was 4226 m3/ha, while the corresponding actual irrigation requirement of rice was [4200–7200] m3/ha) to improve the water use efficiency, and surface water allocation accounted for two-thirds. Maize had the largest planting area, although planting soybean generated the most greenhouse gases (greenhouse gas emissions from field activities for rice, maize, and soybean were 43.46%, 84.06% and 91.16%, respectively); However, these gases can be absorbed by forests. The model improved the harmonious degree of the resource-economy-environment system from 0.24 to 0.56 after optimization.
SIGNIFICANCES: Integrated models contribute to the sustainable management of water, food, energy and land resources and can consider the complex dynamics under climate change. It can be used as a general model and extended to other agroforestry systems that show inefficient agricultural production.

5 Gu, D.; Guo, J.; Fan, Y.; Zuo, Q.; Yu, L.. 2022. Evaluating water-energy-food system of Yellow River Basin based on type-2 fuzzy sets and pressure-state-response model. Agricultural Water Management, 267:107607. [doi: https://doi.org/10.1016/j.agwat.2022.107607]
Water resources ; Energy consumption ; Food systems ; Evaluation ; River basins ; Decision making ; Water use ; Indicators ; Models ; Uncertainty / China / Yellow River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051097)
https://vlibrary.iwmi.org/pdf/H051097.pdf
(9.41 MB)
Water, energy and food security are the prerequisites for coping with intensified climate change, and also the guarantee for sustaining socio-economic development. This study aims to establish a “Pressure-State-Response” (PSR) model to evaluate the water-energy-food (WEF) system security and clarify the main factors affecting WEF development, system state and social response. In addition, the interval type-2 fuzzy sets and analytic hierarchy process are incorporated to address uncertainty in the importance weights of quantitative indicators. Scenario design, Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Combinative Distance-based Asssessment (CODAS) methods are also adopted to carry out quantitative calculation and explore the key constraints of WEF system security in the nine provinces of the Yellow River basin from 2006 to 2019. Results show that the WEF system security in each province has been improved in 2006–2019 under different scenarios. In detail, the pressure of WEF system is decreasing in Gansu, Ningxia, and Shanxi province, which is due to the decrease in waste water emissions per person and energy consumption per unit of GDP. The state of WEF system in various provinces has also been improved year by year. The response of WEF system is increasing in all provinces except Shanxi. There is obvious spatial-temporal heterogeneity in different provinces, but the regional gaps are narrowing. These findings cannot only reflect the multi-element relationship from both human activities and environmental changes, but also deal with uncertain in WEF assessment system. The obtained results can provide scientific basis for decision-makers to formulate relevant policies and measures.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO