Your search found 1 records
1 Urfels, A.; McDonald, A. J.; Krupnik, T. J.; van Oel, P. R. 2020. Drivers of groundwater utilization in water-limited rice production systems in Nepal. Water International, 45(1):39-59. [doi: https://doi.org/10.1080/02508060.2019.1708172]
Groundwater irrigation ; Water use ; Agricultural production ; Rice ; Shallow tube wells ; Irrigation scheduling ; Irrigation efficiency ; Smallholders ; Farmers ; Resilience ; Water market ; Pumps ; Electrification ; Solar energy ; Model / Nepal / Eastern Gangetic Plains / Rupandehi / Banke / Kailali
(Location: IWMI HQ Call no: e-copy only Record No: H049516)
https://www.tandfonline.com/doi/abs/10.1080/02508060.2019.1708172?needAccess=true#aHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9wZGYvMTAuMTA4MC8wMjUwODA2MC4yMDE5LjE3MDgxNzI/bmVlZEFjY2Vzcz10cnVlQEBAMA==
https://vlibrary.iwmi.org/pdf/H049516.pdf
(2.85 MB) (2.85 MB)
Most rice farmers in Nepal’s Terai region do not fully utilize irrigation during breaks in monsoon rainfall. This leads to yield losses despite abundant groundwater resources and ongoing expansion of diesel pumps and tubewell infrastructure. We investigate this puzzle by characterizing delay factors governing tubewell irrigation across wealth and precipitation gradients. After the decision to irrigate, different factors delay irrigation by roughly one week. While more sustainable and inexpensive energy for pumping may eventually catalyze transformative change, we identify near-term interventions that may increase rice farmers’ resilience to water stress in smallholder-dominated farming communities based on prevailing types of irrigation infrastructure.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO