Your search found 3 records
1 Davies, J.; Baxter, J.; Bradley, M.; Connor, D.; Khan, J.; Murray, E.; Sanderson, W.; Turnbull, C.; Vincent, M. (Eds.) 2001. Marine monitoring handbook, March 2001. Peterborough, UK: Joint Nature Conservation Committee. 405p.
Handbooks ; Monitoring ; Techniques ; Estuaries ; Lagoons ; Legislation / UK
(Location: IWMI-HQ Call no: P 5974 Record No: H029638)

2 Smakhtin, V.; Ashton, P.; Batchelor, A.; Meyer, R.; Murray, E.; Barta, B.; Bauer, N.; Naidoo, D.; Olivier, J.; Terblanche, D. 2001. Unconventional water supply options in South Africa: a review of possible solutions. Water International, 26(3):314-334.
Water supply ; Water scarcity ; Water deficit ; Water storage ; Surface water ; Water reuse ; Water harvesting ; Reservoirs ; International waters ; Virtual water ; Groundwater ; Artificial recharge / South Africa
(Location: IWMI HQ Call no: e-copy only Record No: H044313)
https://vlibrary.iwmi.org/pdf/H044313.pdf
(2.67 MB)
South Africa faces escalating freshwater problems and will experience prolonged water deficits within the next 25 to 30 years if current patterns ofwater use continue unchanged. The level of conventional water resources utilization in the country is very high and new approaches are necessary to stretch the limited water supplies available to meet projected demands for water. Significant research into new technologies and sources of supply has been carried out in South Africa and abroad during the past few decades. This has resulted in the development and evaluation of a number ofinnovative concepts and methodologies, as well as novel adaptations to existing approaches. These concepts and methodologies include: integration of surface water transfers into a national water grid, transfers of untapped surface water resources from countries located to the north of South Africa, exploitation of deep groundwater and the use of aquifers for storage of surplus water, atmospheric water (jog and cloud) harvesting, iceberg water utilization, desalination and direct use of sea water. Some of these options are still theoretical and unproven, while others have reached different stages of practical testing and implementation. Information on these alternatives for water supply is widely scattered over many different sources. This paper reviews the available information and examines some ofthese unconventional sources and options for future water supply in terms of their technical aspects, potential applications, likely impacts, approximate costs, and regional relevance in terms of alleviating predicted water shortages.

3 Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R. D. G.; Jain, R. C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; Stefan, C.; Pettenati, M.; van der Gun, J.; Sprenger, C.; Massmann, G.; Scanlon, B. R.; Xanke, J; Jokela, P.; Zheng, Y.; Rossetto, R.; Shamrukh, M.; Pavelic, Paul; Murray, E.; Ross, A.; Bonilla Valverde, J. P.; Palma Nava, A.; Ansems, N.; Posavec, K.; Ha, K.; Martin, R.; Sapiano, M. 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1):1-30. [doi: https://doi.org/10.1007/s10040-018-1841-z]
Groundwater management ; Groundwater recharge ; Groundwater extraction ; Groundwater pollution ; Water use ; Water quality ; Water resources ; Water levels ; Water storage ; Water supply ; Aquifers ; Artificial recharge ; Filtration ; Drinking water
(Location: IWMI HQ Call no: e-copy only Record No: H048926)
https://link.springer.com/content/pdf/10.1007%2Fs10040-018-1841-z.pdf
https://vlibrary.iwmi.org/pdf/H048926.pdf
(4.47 MB)
The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance of MAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km3/year, ~2.4% of groundwater extraction in countries reporting MAR (or ~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality of water supplies.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO