Your search found 2 records
1 Saeed, F.. 2003. Ecological protection and sustainable development of Indus River basin, Pakistan: issues and challenges. In Yellow River Conservancy Commission. Proceedings, 1st International Yellow River Forum on River Basin Management – Volume III. Zhengzhou, China: The Yellow River Conservancy Publishing House. pp.447-458.
River basin management ; Ecology ; Ecosystems ; Climate ; Water demand / Pakistan / Indus River
(Location: IWMI-HQ Call no: 333.91 G592 YEL Record No: H034753)

2 Otto, F. E. L.; Zachariah, M.; Saeed, F.; Siddiqi, A.; Kamil, S.; Mushtaq, H.; Arulalan, T.; AchutaRao, K.; Chaithra, S. T.; Barnes, C.; Philip, S.; Kew, S.; Vautard, R.; Koren, G.; Pinto, I.; Wolski, P.; Vahlberg, M.; Singh, R.; Arrighi, J.; van Aalst, M.; Thalheimer, L.; Raju, E.; Li, S.; Yang, W.; Harrington, L. J.; Clarke, B. 2023. Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan. Environmental Research: Climate, 2(2):025001. [doi: https://doi.org/10.1088/2752-5295/acbfd5]
Climate change ; Monsoon climate ; Rainfall ; Flooding ; Vulnerability ; Communities ; Infrastructure ; Precipitation ; Early warning systems ; Households ; Socioeconomic aspects ; Resilience / Pakistan / Balochistan / Sindh
(Location: IWMI HQ Call no: e-copy only Record No: H052368)
https://iopscience.iop.org/article/10.1088/2752-5295/acbfd5/pdf
https://vlibrary.iwmi.org/pdf/H052368.pdf
(4.36 MB) (4.36 MB)
As a direct consequence of extreme monsoon rainfall throughout the summer 2022 season Pakistan experienced the worst flooding in its history. We employ a probabilistic event attribution methodology as well as a detailed assessment of the dynamics to understand the role of climate change in this event. Many of the available state-of-the-art climate models struggle to simulate these rainfall characteristics. Those that pass our evaluation test generally show a much smaller change in likelihood and intensity of extreme rainfall than the trend we found in the observations. This discrepancy suggests that long-term variability, or processes that our evaluation may not capture, can play an important role, rendering it infeasible to quantify the overall role of human-induced climate change. However, the majority of models and observations we have analysed show that intense rainfall has become heavier as Pakistan has warmed. Some of these models suggest climate change could have increased the rainfall intensity up to 50%. The devastating impacts were also driven by the proximity of human settlements, infrastructure (homes, buildings, bridges), and agricultural land to flood plains, inadequate infrastructure, limited ex-ante risk reduction capacity, an outdated river management system, underlying vulnerabilities driven by high poverty rates and socioeconomic factors (e.g. gender, age, income, and education), and ongoing political and economic instability. Both current conditions and the potential further increase in extreme peaks in rainfall over Pakistan in light of anthropogenic climate change, highlight the urgent need to reduce vulnerability to extreme weather in Pakistan.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO