Your search found 17 records
1 Dissanayake, Priyanka; Clemett, Alexandra; Jayakody, Priyantha; Amerasinghe, Priyanie. 2007. Report on water quality survey and pollution in Kurunegala, Sri Lanka. Unpublished project report produced as part of the Wastewater Agriculture and Sanitation For Poverty Alleviation in Asia (WASPA Asia) 32p. + annexes. (WASPA Asia Project Report 6)
Water resources ; Water pollution ; Water quality ; Monitoring ; Electrical conductivity ; Ph ; Nitrogen ; Iron ; Boron ; Heavy metals ; Coliform bacteria / Sri Lanka / Kurunegala / Wan Ela / Beu Ela
(Location: IWMI HQ Call no: IWMI 363.6 G744 DIS Record No: H041013)
https://publications.iwmi.org/pdf/H041013.pdf
https://vlibrary.iwmi.org/pdf/H041013.pdf
(0.57 MB)
This project is funded by the European Commission under its Asia Pro Eco II Program. It is undertaken by the International Water Management Institute (IWMI), Sri Lanka; COSI, Sri Lanka; the International Water and Sanitation Centre (IRC), the Netherlands; NGO Forum for Drinking Water Supply and Sanitation, Bangladesh; and the Stockholm Environment Institute (SEI), Sweden. The project pilot cities are Rajshahi City in Bangladesh and Kurunegala City in Sri Lanka.

2 Cofie, Olufunke; Nikiema, Josiane; Impraim, Robert; Adamtey, N.; Paul, Johannes; Kone, D. 2016. Co-composting of solid waste and fecal sludge for nutrient and organic matter recovery. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 47p. (Resource Recovery and Reuse Series 03) [doi: https://doi.org/10.5337/2016.204]
Resource recovery ; Environmental effects ; Nutrients ; Solid wastes ; Recycling ; Composting ; Faecal coliforms ; Sewage sludge ; Urbanization ; Urban wastes ; Food wastes ; Waste management ; Developing countries ; Farmyard manure ; Excreta ; Soil organic matter ; Organic wastes ; Organic fertilizers ; Public health ; Health hazards ; Sanitation ; Moisture content ; Temperature ; pH ; Microorganisms ; Aeration ; Pathogens ; Emission ; Livestock ; Heavy metals
(Location: IWMI HQ Call no: IWMI Record No: H047536)
http://www.iwmi.cgiar.org/Publications/wle/rrr/resource_recovery_and_reuse-series_3.pdf
(3 MB)
Biological treatment, composting, in particular, is a relatively simple, durable and inexpensive alternative for stabilizing and reducing biodegradable waste. Co-composting of different waste sources allows to enhance the compost nutrient value. In particular, integration of ‘biosolids’ from the sanitation sector as potential input material for co-composting would provide a solution for the much needed treatment of fecal sludge from on-site sanitation systems, and make use of its high nutrient content. This research paper elaborates in detail the main parameters that govern the co-composting process as well as factors that control the production of a safe and valuable quality compost. It further explains technological options to tailor the final product to crop and farmer needs.

3 Woldetsadik, D.; Drechsel, Pay; Keraita, B.; Marschner, B.; Itanna, F.; Gebrekidan, H. 2016. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. SpringerPlus, 5:1-16. [doi: https://doi.org/10.1186/s40064-016-2019-6]
Alkalinity ; Cadmium ; Immobilization ; Nutrients ; Cadmium ; Leaf vegetables ; Lettuces ; Soil sampling ; pH ; Faecal coliforms ; Nitrates ; Carbon ; Heavy metals ; Waste treatment
(Location: IWMI HQ Call no: e-copy only Record No: H047506)
http://tinyurl.com/hesn7y9
https://vlibrary.iwmi.org/pdf/H047506.pdf
(0.85 MB)
To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84–87, 65–68 and 82–91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

4 Mekuria, Wolde; Langan, Simon; Noble, A.; Johnston, Robyn. 2017. Soil restoration after seven years of exclosure management in northwestern Ethiopia. Land Degradation and Development, 28(4):1287-1297. [doi: https://doi.org/10.1002/ldr.2527]
Soil fertility ; Soil properties ; Soil moisture ; Soil organic matter ; Soil sampling ; Soil management ; Ecology ; Ecosystem services ; Land degradation ; pH ; Grazing lands ; Carbon ; Environmental degradation ; Watershed management ; Vegetation / Ethiopia
(Location: IWMI HQ Call no: e-copy only Record No: H047539)
http://publications.iwmi.org/pdf/H047539.pdf
https://vlibrary.iwmi.org/pdf/H047539.pdf
(0.32 MB)
Ecological restoration through exclosure establishment has become an increasingly important approach to reversing degraded ecosystems in rangelands worldwide. The present study was conducted in northwestern Ethiopia where policy programs are aiming to restore degraded lands. Changes in soil properties following establishing exclosures on communal grazing lands were investigated. A space-for-time substitution approach was used to monitor changes in soil properties after conversion of communal grazing lands to exclosures with ages of establishment ranging from 1 to 7-years. Significant differences in soil pH, exchangeable cations, cation exchange capacity, soil moisture content, and bulk density were observed within exclosures and between exclosures and communal grazing land. Communal grazing land displayed significantly higher soil total nitrogen, phosphorus and potassium compared to exclosures. Exclosures did not display significantly higher soil organic matter content when compared to the communal grazing land. The results confirm that more than 7 years after the establishment of exclosures is required to detect significant improvements in most of the investigated soil properties. Prohibition of the practice of grass harvesting during the first 3 to 5 years following the establishment of exclosure, and decreasing the amount of grass harvest with exclosure age could support to increase easily decomposable organic inputs to the soil and improve soil properties in relatively short period of time.

5 Estabragh, A. R.; Moghadas, M.; Javadi, A. A. 2016. Hydrochemical effect of different quality of water on the behaviour of an expansive soil during wetting and drying cycles. Irrigation and Drainage, 65(3):371-381. [doi: https://doi.org/10.1002/ird.1974]
Water quality ; Hydrology ; Chemical composition ; Reservoirs ; Pore water ; Expansive Soils ; Wetting drying cycles ; pH ; Electrical conductivity ; Osmotic pressure ; Deformation ; Experimentation ; Flooding ; Distilled water ; Acidic Water ; Saline water
(Location: IWMI HQ Call no: e-copy only Record No: H047654)
https://vlibrary.iwmi.org/pdf/H047654.pdf
(1.07 MB)
The effect of quality of water on deformation, pH, EC (electrical conductivity) and osmotic suction was studied for an expansive soil during wetting and drying tests. The cyclic wetting and drying tests were conducted on samples of an expansive soil in a modified oedometer flooded with distilled, acidic and saline water. During the tests axial deformation of the samples was recorded continuously. pH and EC of pore water and reservoir water were measured through duplicated samples in a conventional oedometer. Osmotic suction was calculated based on the values of EC. The results show that the magnitude of deformation depends on the quality of the water and the deformation attained an equilibrium condition after almost four cycles. pH, EC and osmotic suction decreased with increasing suction.

6 Surendran, U.; Sandeep, O.; Joseph, E. J. 2016. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management, 178:21-29. [doi: https://doi.org/10.1016/j.agwat.2016.08.016]
Irrigation water ; Wastewater treatment ; Magnetic water ; Saline water ; Magnetic field ; Experimentation ; Drip irrigation ; Soil moisture ; Electrical conductivity ; pH ; Total dissolved solids ; Plant growth ; Crop yield ; Cowpeas ; Brinjal / India / Kerala / Kozhikode
(Location: IWMI HQ Call no: e-copy only Record No: H047850)
https://vlibrary.iwmi.org/pdf/H047850.pdf
(2.24 MB)
Magnetic treatment has remained a controversial process for antiscale treatment of industrial and domestic water treatment over the past many years. Hence a study was initiated to evaluate the magnetic treatment of irrigation water on growth and yield parameters of cow pea and brinjal using pot and field experiments. Also, the impact of magnetic treatment on water properties and soil moisture were also evaluated. Under pot experiment, the treatments tried are normal water, hard water 150 and 300 ppm, saline water 500, 1000 and 2000 ppm of both control and magnetic treated solutions, respectively. Two permanent magnets with the strength of 1800–2000 G was used. The results showed that magnetic treatment of irrigation water types led to an improvement in crop growth and yield parameters of cow pea. Magnetic treatments tend to reduce electrical conductivity, total dissolved solids and salinity levels of all solutions except normal irrigation water, whereas a definite trend of increase in pH was noticed for all the treatments. Soil moisture study results showed that the differences in soil moisture for days 1–3 after irrigation with magnetized irrigation water were lesser than those for the control solutions. Irrigation with magnetized irrigation water caused higher soil moisture compared with the control for different solution of saline and hard water respectively. In the field experiment with brinjal also the magnetic treatment of normal and saline water improved the yield by 25.8 and 17.0% over control. Scanning electron microscope image analysis results confirmed that under magnetic treated hard water, there was variation in the crystal structure of calcium carbonate. The length of these crystals is more when compared to control solutions. These results indicated the beneficial effect of magnetically treated irrigation water on growth and yield of crops, the properties of water and confirmed the possibility of using low quality water for agriculture.

7 Khadse, G. K.; Patni, P. M.; Labhasetwar, P. K. 2016. Water quality assessment of Chenab River and its tributaries in Jammu Kashmir (India) based on WQI [Water Quality Index]. Sustainable Water Resources Management, 2(2):121-126. [doi: https://doi.org/10.1007/s40899-016-0046-7]
Water quality ; Water pollution ; Assessment ; Rivers ; Tributaries ; Bacteriological analysis ; Chemicophysical properties ; Faecal coliforms ; pH ; Turbidity ; Dissolved oxygen ; Nitrates ; Total dissolved solids ; Phosphates / India / Jammu and Kashmir / Chenab River
(Location: IWMI HQ Call no: e-copy only Record No: H047910)
https://vlibrary.iwmi.org/pdf/H047910.pdf
(1.06 MB)
An assessment of the water quality has been carried out to explore the water quality index (WQI) of Chenab river and its tributaries in Jammu Kashmir (India). Fourteen water samples from Chenab river and its tributaries at various locations were collected and analyzed for physico-chemical and bacteriological parameters. Nine parameters i.e. BOD, DO, fecal coliforms, nitrate, pH, temperature change, TDS, total phosphate and turbidity were considered for calculating the WQI based on National Sanitation Foundation (NSF) information system. The WQI showed good water quality, except Bichleri stream water indicating that water of Chenab river and its tributaries are least polluted and is suitable for drinking after conventional treatment. The WQI rating of Bichleri stream water is medium as it carries wastewater and may not be useful for domestic use without treatment.

8 Sharma, P.; Meher, P. K.; Kumar, A.; Gautam, Y. P.; Mishra, K. P. 2014. Changes in water quality index of Ganges River at different locations in Allahabad. Sustainability of Water Quality and Ecology, 3-4:67-76. (Special issue: Towards Sustainability Assessment of Water Systems: Current Approaches and Future Challenges). [doi: https://doi.org/10.1016/j.swaqe.2014.10.002]
Water quality ; Drinking water ; Water pollution ; Rivers ; Chemicophysical properties ; pH ; Electrical conductivity ; Dissolved oxygen ; Total dissolved solids ; Temperature ; Alkalinity ; Ions ; Cations ; Anions ; Measurement ; Monsoon climate / India / Allahabad / Ganges River / Yamuna River
(Location: IWMI HQ Call no: e-copy only Record No: H047958)
https://vlibrary.iwmi.org/pdf/H047958.pdf
(1.10 MB)
We have determined the water quality index (WQI) of post-monsoon water samples with an aim to assess changes in Ganges river at various locations in Allahabad stretch including that from the confluence with river Yamuna. Physicochemical parameters such as temperature, pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), major cations e.g. Na+ , K+ , Mg2+, Ca2+, major anions e.g. F, Cl, Br, SO4 2, NO3 , PO4 2 and alkalinity were analyzed by standard procedures. The values obtained were compared with the guideline values for drinking water by Bureau of Indian Standard (BIS) and World Health Organization (WHO). From the measured quantities, certain parameters were selected to derive WQI for the variations in water quality of each designated sampling site. Results showed considerable deterioration in quality of water at some of the sites. WQI of Ganges river water at Allahabad ranged from 86.20 to 157.69 which falls in the range of poor quality of water. Pearson’s correlation matrix was drawn to find possible interrelations among measured water quality parameters. It is shown that WQI may be a useful tool for assessing water quality and predicting trend of variation in water quality at different locations in the Ganges river.

9 Khadse, G. K.; Patni, P. M.; Labhasetwar, P. K. 2015. Removal of iron and manganese from drinking water supply. Sustainable Water Resources Management, 1(2):157-165. [doi: https://doi.org/10.1007/s40899-015-0017-4]
Drinking water ; Waste water treatment plants ; Water supply ; Water quality ; Iron ; Manganese ; Filtration ; Maintenance ; Odour abatement ; Chlorine ; Potassium permanganate ; Chemicophysical properties ; pH ; Lakes / India / Nagpur / Hingna / Ambazari Lake
(Location: IWMI HQ Call no: e-copy only Record No: H047973)
https://vlibrary.iwmi.org/pdf/H047973.pdf
(0.62 MB)
The water treatment plant at the Hingna industrial area receives raw water from Ambazari Lake and supplies drinking water to industrial area, after conventional treatment. The treated water was found to have a pungent odour and yellow colour, which in turn changed from a brown to black precipitate. The water becomes aesthetically unacceptable to consumers. It was observed that a blackish precipitate formation was due to the presence of iron and manganese in lake water, which was not completely removed during treatment. To remove iron and manganese from drinking water, treatment studies were carried out with chlorine and KMnO4 as oxidants. Alum and lime were added for coagulation and pH correction. Jar test studies revealed that treatment with potassium permanganate at pH 7.7–8.0 was effective in the removal of iron, manganese and organics, which were responsible for causing colour and odour to water. The studies helped in improvements in water quality for safe drinking water supply.

10 Amoah, Philip; Adamtey, N.; Cofie, Olufunke. 2017. Effect of urine, poultry manure, and dewatered faecal sludge on agronomic characteristics of cabbage in Accra, Ghana. Resources, 6(2):1-14. [doi: https://doi.org/10.3390/resources6020019]
Soil chemicophysical properties ; Soil analysis ; Chemical analysis ; Fertilizer application ; pH ; Urine ; Poultry droppings ; Organic fertilizers ; Faecal sludge ; Agronomic characters ; Nutrient uptake ; Urban agriculture ; Cabbages ; Nitrogen fertilizers ; Wet season ; Farmers ; Environmental pollution ; Water pollution / Ghana / Accra
(Location: IWMI HQ Call no: e-copy only Record No: H048132)
http://www.mdpi.com/2079-9276/6/2/19/pdf
https://vlibrary.iwmi.org/pdf/H048132.pdf
(1.39 MB)
The study was to assess the: (i) effect of human urine and other organic inputs on cabbage growth, yield, nutrient uptake, N-use efficiency, and soil chemical characteristics; (ii) economic returns of the use of urine and/or other organic inputs as a source of fertiliser for cabbage production. To meet these objectives, participatory field trials were conducted at Dzorwulu, Accra. Four different treatments (Urine alone, Urine + dewatered faecal sludge (DFS), Urine + poultry droppings (PD), NPK (15-15-15) + PD) were applied in a Randomised Complete Block Design (RCBD) with soil alone as control. Each treatment was applied at a rate of 121 kg·N·ha-1 corresponding to the Nitrogen requirement of cabbage in Ghana. Growth and yield parameters, plant nutrient uptake, and soil chemical characteristics were determined using standard protocols. There were no significant differences between treatments for cabbage head weight, or total and marketable yields. However, unmarketable yield from NPK + PD was 1 to 2 times higher (p < 0.05) than those from Urine + PD, Urine + DFS, and Urine alone. Seasonal effect on yields was also pronounced with higher (p < 0.001) cabbage head weight (0.95 kg) and marketable yields (12.7 kg·ha-1) in the dry season than the rainy season (0.42 kg and 6.27 kg·ha-1). There was higher (p < 0.005) phosphorous uptake in cabbage from Urine + PD treated soil than those from other treatments. Nitrogen (N), phosphorous (P), and potassium (K) uptake in the dry season was significantly higher than the rainy season. Soils treated with Urine + DFS and Urine + PD were high in total N content. Urine + PD and Urine + DFS treated soils gave fairly high yield than PD + NPK with a net gain of US$1452.0 and US$1663.5, respectively. The application of urine in combination with poultry droppings has the potential to improve cabbage yields, nutrient uptake, and soil nitrogen and phosphorous content.

11 Woldetsadik, D.; Drechsel, Pay; Keraita, B.; Itanna, F.; Gebrekidan, H. 2017. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. International Journal of Food Contamination, 4:1-13. [doi: https://doi.org/10.1186/s40550-017-0053-y]
Heavy metals ; Public health ; Health hazards ; Wastewater irrigation ; Urban areas ; Vegetable growing ; Irrigation water ; Soils ; Soil organic matter ; pH ; Crops ; Elements ; Farming systems / Ethiopia / Addis Ababa
(Location: IWMI HQ Call no: e-copy only Record No: H048133)
https://link.springer.com/content/pdf/10.1186%2Fs40550-017-0053-y.pdf
https://vlibrary.iwmi.org/pdf/H048133.pdf
(699 KB)
Background: Wastewater irrigation for vegetable production is a highly prevalent practice in Addis Ababa and a number of articles have been published on wastewater-irrigated soils and vegetables contaminated with heavy metals. However, to the best of our knowledge, an insight into assessment of human health risks associated with the consumption of vegetable crops grown on wastewater-irrigated soils is non-existent in the city. Long-term effect of wastewater irrigation on the build-up of heavy metals in soils and selected vegetable crops in Addis Ababa urban vegetable farming sites (10) was evaluated. By calculating estimated daily intakes (EDIs) and target hazard quotients (THQs) of metals, health risk associated with the consumption of the analyzed vegetables was also evaluated. Results: The heavy metal concentrations in irrigation water and soils did not exceed the recommended maximum limits (RMLs). Moreover, Cd, Co, Cr, Cu, Ni and Zn concentrations in all analyzed vegetables were lower than the RML standards. In contrast, Pb concentrations were 1.4–3.9 times higher. Results of two way ANOVA test showed that variation in metals concentrations were significant (p < 0.001) across farming site, vegetable type and site x vegetable interaction. The EDI and THQ values showed that there would be no potential health risk to local inhabitants due to intake of individual metal if one or more of the analyzed vegetables are consumed. Furthermore, total target hazard quotients (TTHQs) for the combined metals due to all analyzed vegetables were lower than 1, suggesting no potential health risk even to highly exposed local inhabitants. Conclusions: There is a great respite that toxic metals like Pb and Cd have not posed potential health risk even after long term (more than 50 years) use of this water for irrigation. However, intermittent monitoring of the metals from irrigation water, in soil and crops may be required to follow/prevent their build-up in the food chain.

12 Bassi, N.; Kumar, M. D. 2017. Water quality index as a tool for wetland restoration. Water Policy, 19(3):390-403. [doi: https://doi.org/10.2166/wp.2017.099]
Water quality ; Monitoring ; Assessment ; Wetlands ; Lake restoration ; Water resources ; Anthropogenic factors ; Wastewater ; Pollutant load ; Faecal coliforms ; Temperature ; pH ; Dissolved oxygen ; Turbidity ; Total dissolved solids ; Phosphates ; Nitrates ; Urban areas ; Land use / India / Delhi / Lake Bhalswa
(Location: IWMI HQ Call no: e-copy only Record No: H048185)
https://vlibrary.iwmi.org/pdf/H048185.pdf
(0.31 MB)
Worldwide, wetlands are subjected to increasing anthropogenic pressures resulting in loss of their hydrological and ecological functions. Such impacts are more pronounced in the case of wetlands in urban areas which are exposed to land use changes and increased economic activities. In many Indian cities, natural water bodies such as lakes are heavily polluted due to runoff from farmlands in urban and peri-urban areas and discharge of untreated domestic and industrial wastewater. The major constraint for restoring such water bodies is difficulty in devising a concrete action plan for analysing different sets of water quality parameters. Hence, a water quality index (WQI), which is a tool to analyse large amounts of data on different water quality parameters, is computed for one of the biggest natural lakes in the metropolitan city of Delhi. The mean WQI of the lake was estimated to be 46.27, which indicates a high level of water pollution. The paper discusses how these findings can be used for informing policies on management of wetlands. The paper also suggests establishment of a community based water quality monitoring and surveillance system, backed by infrastructural support from the State, in order to restore the wetlands in urban areas.

13 Kadyampakeni, Davie M.; Mul, Marloes L.; Obuobie, E.; Appoh, Richard; Owusu, Afua; Ghansah, Benjamin; Boakye-Acheampong, Enoch; Barron, Jennie. 2017. Agro-climatic and hydrological characterization of selected watersheds in northern Ghana. Colombo, Sri Lanka: International Water Management Institute (IWMI). 40p. (IWMI Working Paper 173) [doi: https://doi.org/10.5337/2017.209]
Watersheds ; Agricultural production ; Intensification ; Agroclimatology ; Hydrology ; Analytical method ; Agronomic practices ; Water balance ; Water quality ; Water management ; Water deficit ; Climatic factors ; pH ; Electrical conductivity ; Soil texture ; Soil quality ; Soil sampling ; Soil fertility ; Land cover mapping ; Land use ; Rain ; Temperature ; Evapotranspiration ; Farmers ; Wet season ; Dry season ; Reservoir storage ; Wells ; Rivers ; Irrigation schemes ; Catchment areas ; Cropping systems ; Crop production ; Meteorological stations ; Cation exchange capacity / Ghana
(Location: IWMI HQ Call no: IWMI Record No: H048209)
http://www.iwmi.cgiar.org/Publications/Working_Papers/working/wor173.pdf
(1 MB)
This paper provides the climatic and biophysical context of three watersheds in northern Ghana. The objective of the study is to describe the agro-climatic and hydrological features of the watersheds from a landscape perspective. The analyses show that water surplus occurs about 3 months in a year, with only one month providing a significant surplus. Small-scale irrigation is, therefore, carried out in the dry months between November and June. The quality of water used for irrigation from wells, reservoirs and rivers is good for irrigation and domestic purposes. The soil chemical parameters across the study sites show that the soils are suitable for irrigation and crop system intensification, although it requires substantial fertilizer inputs. The paper concludes that there are opportunities from both a soil quality and water availability perspective to enhance sustainable intensification through small- and medium-scale irrigation in the selected watersheds.

14 Podgorski, J. E.; Eqani, S. A. M. A. S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. 2017. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 3(8):1-10. [doi: https://doi.org/10.1126/sciadv.1700935]
Arsenic ; Contamination ; Groundwater ; Aquifers ; pH ; Water quality ; Drinking water ; Public health ; Health hazards ; Soils ; Probability analysis ; Regression analysis ; Models ; Forecasting / Pakistan / Indus Valley
(Location: IWMI HQ Call no: e-copy only Record No: H048293)
http://advances.sciencemag.org/content/3/8/e1700935.full.pdf
https://vlibrary.iwmi.org/pdf/H048293.pdf
(0.96 MB) (980 KB)
Arsenic-contaminated aquifers are currently estimated to affect ~150 million people around the world. However, the full extent of the problem remains elusive. This is also the case in Pakistan, where previous studies focused on isolated areas. Using a new data set of nearly 1200 groundwater quality samples throughout Pakistan, we have created state-of-the-art hazard and risk maps of arsenic-contaminated groundwater for thresholds of 10 and 50 mg/liter. Logistic regression analysis was used with 1000 iterations, where surface slope, geology, and soil parameters were major predictor variables. The hazard model indicates that much of the Indus Plain is likely to have elevated arsenic concentrations, although the rest of the country is mostly safe. Unlike other arsenic-contaminated areas of Asia, the arsenic release process in the arid Indus Plain appears to be dominated by elevated-pH dissolution, resulting from alkaline topsoil and extensive irrigation of unconfined aquifers, although pockets of reductive dissolution are also present. We estimate that approximately 50 million to 60 million people use groundwater within the area at risk, with hot spots around Lahore and Hyderabad. This number is alarmingly high and demonstrates the urgent need for verification and testing of all drinking water wells in the Indus Plain, followed by appropriate mitigation measures.

15 Bakare, B. F.; Mtsweni, S.; Rathilal, S. 2017. Characteristics of greywater from different sources within households in a community in Durban, South Africa. Journal of Water Reuse and Desalination, 7(4):520-528. [doi: https://doi.org/10.2166/wrd.2016.092]
Wastewater treatment ; Biological treatment of pollutants ; Water reuse ; Water quality ; Chemicophysical properties ; Pollutant load ; Turbidity ; pH ; Total solids ; Communities ; Households / South Africa / Durban
(Location: IWMI HQ Call no: e-copy only Record No: H048444)
http://jwrd.iwaponline.com/content/7/4/520.full.pdf
https://vlibrary.iwmi.org/pdf/H048444.pdf
(0.25 MB) (260 KB)
The reuse of greywater is steadily gaining importance in South Africa. Greywater contains pollutants that could have adverse effects on the environment and public health if the water is not treated before reuse. Successful implementation of any greywater treatment process depends largely on its characteristics in terms of the pollutant strength. This study investigated the physico-chemical characteristics of greywater from different sources within 75 households in a community in Durban, South Africa. The study was undertaken to create an understanding of greywater quality from different sources within and between households. Greywater samples were collected from the kitchen, laundry and bathing facilities within each of the households. The samples were analysed for: pH, conductivity, turbidity, total solids, chemical oxygen demand (COD) and biological oxygen demand (BOD). There was a significant difference in the parameters analysed between the greywater from the kitchen compared with the greywater from the bathtub/shower and laundry. It was also observed that the characteristics of greywater from the different households varied considerably. The characteristics of the greywater obtained in this study suggest that the greywater generated cannot be easily treatable using biological treatment processes and/or technologies due to the very low mean BOD : COD ratio (<0.5).

16 Kadyampakeni, Davie; Appoh, Richard; Barron, Jennie; Boakye-Acheampong, Enoch. 2018. Analysis of water quality of selected irrigation water sources in northern Ghana. Water Science and Technology: Water Supply, 18(4):1308-1317. [doi: https://doi.org/10.2166/ws.2017.195]
Water quality ; Water storage ; Water availability ; Water requirements ; Irrigation water ; Irrigation operation ; Reservoir operation ; Salinity ; Wells ; Small scale systems ; Food security ; Electrical conductivity ; Chemical compounds ; Agricultural policy ; Rivers ; pH ; Biological contamination / Ghana
(Location: IWMI HQ Call no: e-copy only Record No: H048787)
https://vlibrary.iwmi.org/pdf/H048787.pdf
Small-scale irrigation continues to cushion the food security gap in sub-Saharan Africa. Irrigation is largely governed by water availability, soil type and crop water requirements, among other factors. Thus, a study was conducted to assess the suitability of various water sources for irrigation in northern Ghana. Specifically, the study sought to assess quality of water sources in the Savelugu, Kasena-Nankana East, and Nabdam districts for small-scale irrigation development. The water quality parameters used were: pH, electrical conductivity (ECw), sodium adsorption ratio (SAR), sodium percent (Na%), soluble sodium percentage (SSP), magnesium adsorption ratio (MAR), Kelley's ratio (KR), total hardness (TH), Chloride (Cl), E. coli, and Faecal coliforms. While we found most of the irrigation water sources, including small reservoirs, dams, wells and rivers suitable, few unsuitable irrigation water sources were also identified. Overall, the study found that opportunities for scaling small-scale irrigation exist in all the sites. The knowledge generated from this study will guide irrigation water use, and agricultural policy for sustainable smallholder irrigation development in the region.

17 Brindha, K.; Pavelic, Paul; Sotoukee, T. 2019. Environmental assessment of water and soil quality in the Vientiane Plain, Lao PDR. Groundwater for Sustainable Development, 8: 24-30. [doi: https://doi.org/10.1016/j.gsd.2018.08.005]
Environmental impact assessment ; Water quality ; Water pollution ; Water resources ; Drinking water ; Water levels ; Groundwater ; Faecal coliforms ; Bacteria ; Biological contamination ; Chlorides ; Nitrates ; Soil quality ; Soil sampling ; pH ; Sewage ; Land resources ; Filtration / Lao People's Democratic Republic / Vientiane Plain
(Location: IWMI HQ Call no: e-copy only Record No: H048891)
https://vlibrary.iwmi.org/pdf/H048891.pdf
A water and soil quality baseline study was carried out across the ~ 4500 km2 Vientiane Plain in Lao PDR. Eight water quality and nine soil parameters were analysed using field kits at 95 sites in March 2015. Elevated electrical conductivity and chloride were apparent at two sites due to geogenic leaching from the marine rock-salt present in some areas. Groundwater was acidic in most locations. Nitrate and faecal contamination were also observed from nitrogenous fertilizers (diffuse) and from leaky sewage pits (localised) respectively. Soil quality is neither nutrient deficient nor does it pose a threat to plant growth. Where groundwater is used for drinking, removal of bacterial contamination by simple filtration or boiling is sufficient. In the absence of a functional monitoring network in the Vientiane Plain, periodic surveys of this kind should be performed. The results should be made widely available to the relevant government departments and other stakeholders for better management of the land and water resources.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO