Your search found 5 records
1 Hinchcliff, F.; Thompson, J.; Pretty, J.; Guijt, I.; Shah, P. 1999. Fertile ground: The impacts of participatory watershed management. Eds. London, UK: IT Publications. xvi, 385p.
Watershed management ; Participatory management ; Participatory rural appraisal ; Farmer participation ; Sustainability ; Productivity ; Soil conservation ; Water conservation ; Rain-fed farming ; Ecosystems ; Catchment areas ; Land management ; Tank irrigation ; Percolation ; Agricultural extension ; Training ; Villages ; Rural development ; Community Development ; Social participation ; Fodder ; Non-governmental organizations ; Environmental effects ; Social impact ; Economic impact ; Case studies ; Equity ; Women / USA / Burkina Faso / India / Philippines / Brazil / Kenya / India / Nepal / Australia / Africa / Pakistan / Central America / Santa Catarina / Rajasthan / Uttar Pradesh / Maharashtra / Ahmednagar / Doon Valley / Tamil Nadu / Mangla
(Location: IWMI-HQ Call no: 333.91 G000 HIN Record No: H024857)

2 Khan, A. R. 1999. An analysis of the surface water resources and water delivery systems in the Indus Basin. Lahore, Pakistan: International Water Management Institute (IWMI). Pakistan National Program. iv, 66p. (IWMI Pakistan Report R-093) [doi: https://doi.org/10.3910/2009.530]
Surface water ; Water allocation ; Hydrology ; River basins ; Irrigation canals ; Reservoir operation / Pakistan / Indus Basin / Kabul River / Jhelum River / Chenab River / Ravi River / Sutlej River / Kotri Barrage / Tarbela / Mangla / Chashma
(Location: IWMI-HQ Call no: IIMI 333.91 G730 KHA Record No: H025254)
https://publications.iwmi.org/pdf/H025254.pdf
https://vlibrary.iwmi.org/pdf/H025254.pdf
(11.16 MB)

3 Ringler, C.; Anwar, Arif. (Eds.) 2015. Water for food security: challenges for Pakistan. Oxon, UK: Routledge. 173p. (Routledge Special Issue on Water Policy and Governance)
Food security ; Irrigation management ; Irrigation systems ; Irrigated farming ; Canals ; Energy consumption ; Watershed management ; Surface water ; Water market ; Catchment areas ; Institutional development ; Legal aspects ; Climate change ; Adaptation ; Drought ; Precipitation ; Economic aspects ; Impact assessment ; River basins / Pakistan / Punjab / Mangla / Indus Basin
(Location: IWMI HQ Call no: IWMI Record No: H046846)
http://vlibrary.iwmi.org/pdf/H046846_TOC.pdf
(0.26 MB)

4 Rafiq, M.; Ahmad, M.; Ahmad, N.; Iqbal, N. 2015. Using fallout 137Cs for evaluation of watershed management in a sub-catchment of Mangla, Pakistan. In Ringler, C.; Anwar, Arif (Eds.). Water for food security: challenges for Pakistan. Oxon, UK: Routledge. pp.83-96.
Watershed management ; Catchment areas ; Caesium ; Erosion ; Sedimentation / Pakistan / Mangla
(Location: IWMI HQ Call no: IWMI Record No: H046852)

5 Ougahi, J. H.; Cutler, M. E. J.; Cook, S. J. 2021. Modelling climate change impact on water resources of the Upper Indus Basin. Journal of Water and Climate Change, 23p. (Online first) [doi: https://doi.org/10.2166/wcc.2021.233]
Water resources ; River basins ; Climate change ; Hydrological modelling ; Precipitation ; Temperature ; Water balance ; Evapotranspiration ; Water yield ; Forecasting ; Soil moisture ; Parameters ; Calibration ; Uncertainty / Pakistan / Upper Indus Basin / Upper Jhelum River Basin / Kabul River Basin / Himalaya / Hindu Kush / Karakoram / Tarbela / Mangla / Nowshera
(Location: IWMI HQ Call no: e-copy only Record No: H050862)
https://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.233/980841/jwc2021233.pdf
https://vlibrary.iwmi.org/pdf/H050862.pdf
(1.47 MB) (1.47 MB)
Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to -28%), and even larger for seasonal precipitation (+91 to -48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: -16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO