Your search found 3 records
1 Wang, L.; Gu, X.; Slater, L. J.; Lai, Y.; Zheng, Y.; Gong, J.; Dembele, Moctar; Tosunoglu, F.; Liu, J.; Zhang, X.; Kong, D.; Li, J. 2023. Attribution of the record-breaking extreme precipitation events in July 2021 over central and eastern China to anthropogenic climate change. Earth's Future, 11(9):e2023EF003613. [doi: https://doi.org/10.1029/2023EF003613]
Precipitation ; Anthropogenic climate change ; Extreme weather events ; Climate prediction ; Forecasting ; Climatology ; Climate models ; Time series analysis ; Greenhouse gas emissions / China
(Location: IWMI HQ Call no: e-copy only Record No: H052231)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF003613
https://vlibrary.iwmi.org/pdf/H052231.pdf
(13.70 MB) (13.7 MB)
In July 2021, Typhoon In-Fa produced record-breaking extreme precipitation events (hereafter referred to as the 2021 EPEs) in central and eastern China, and caused serious socioeconomic losses and casualties. However, it is still unknown whether the 2021 EPEs can be attributed to anthropogenic climate change (ACC) and how the occurrence probabilities of precipitation events of a similar magnitude might evolve in the future. The 2021 EPEs in central (eastern) China occurred in the context of no linear trend (a significantly increasing trend at a rate of 4.44%/decade) in the region-averaged Rx5day (summer maximum 5-day accumulated precipitation) percentage precipitation anomaly (PPA), indicating that global warming might have no impact on the 2021 EPE in central China but might have impacted the 2021 EPE in eastern China by increasing the long-term trend of EPEs. Using the scaled generalized extreme value distribution, we detected a slightly negative (significantly positive) association of the Rx5day PPA time series in central (eastern) China with the global mean temperature anomaly, suggesting that global warming might have no (a detectable) contribution to the changes in occurrence probability of precipitation extremes like the 2021 EPEs in central (eastern) China. Historical attributions (1961–2020) showed that the likelihood of the 2021 EPE in central/eastern China decreased/increased by approximately +47% (-23% to +89%)/+55% (-45% to +201%) due to ACC. By the end of the 21st century, the likelihood of precipitation extremes similar to the 2021 EPE in central/eastern China under SSP585 is 14 (9–19)/15 (9–20) times higher than under historical climate conditions.

2 Lin, J.; Bryan, B. A.; Zhou, X.; Lin, P.; Do, H. X.; Gao, L.; Gu, X.; Liu, Z.; Wan, L.; Tong, S.; Huang, J.; Wang, Q.; Zhang, Y.; Gao, H.; Yin, J.; Chen, Z.; Duan, W.; Xie, Z.; Cui, T.; Liu, J.; Li, M.; Li, X.; Xu, Z.; Guo, F.; Shu, L.; Li, B.; Zhang, J.; Zhang, P.; Fan, B.; Wang, Y.; Zhang, Y.; Huang, J.; Li, X.; Cai, Y.; Yang, Z. 2023. Making China’s water data accessible, usable and shareable. Nature Water, 1:328-335. [doi: https://doi.org/10.1038/s44221-023-00039-y]
Water resources ; Data collection ; Databases ; Monitoring ; Modelling ; Water quality ; Wastewater treatment ; Stream flow ; Transboundary waters ; Water demand ; Infrastructure ; Policies / China
(Location: IWMI HQ Call no: e-copy only Record No: H052133)
https://vlibrary.iwmi.org/pdf/H052133.pdf
(1.42 MB)
Water data are essential for monitoring, managing, modelling and projecting water resources. Yet despite such data—including water quantity, quality, demand and ecology—being extensively collected in China, it remains difficult to access, use and share them. These challenges have led to poor data quality, duplication of effort and wasting of resources, limiting their utility for supporting decision-making in water resources policy and management. In this Perspective we discuss the current state of China’s water data collection, governance and sharing, the barriers to open-access water data and its impacts, and outline a path to establishing a national water data infrastructure to reform water resource management in China and support global water-data sharing initiatives.

3 Zhang, X.; Gu, X.; Slater, L. J.; Dembele, Moctar; Tosunoglu, F.; Guan, Y.; Liu, J.; Zhang, X.; Kong, D.; Xie, F.; Tang, X. 2023. Amplification of coupled hot-dry extremes over eastern monsoon China. Earth's Future, 11(12):e2023EF003604. [doi: https://doi.org/10.1029/2023EF003604]
Extreme weather events ; Monsoons ; Dry spells ; Heat ; Air temperature ; Humidity ; Precipitation / China
(Location: IWMI HQ Call no: e-copy only Record No: H052480)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF003604
https://vlibrary.iwmi.org/pdf/H052480.pdf
(10.40 MB) (10.4 MB)
High air temperatures and low atmospheric humidity can result in severe disasters such as flash droughts in regions characterized by high humidity (monsoon regions). However, it remains unclear whether responses of hot extremes to warming temperature are amplified on dry days as well as the response of dry extremes on hot days. Here, taking eastern monsoon China (EMC) as a typical monsoon region, we find a faster increase in air temperature on drier summer days, and a faster decrease in atmospheric humidity on hotter days, indicating “hotter days get drier” and “drier days get hotter” (i.e., coupling hotter and drier extremes), especially in southern EMC. The southern EMC is also a hotspot where the coupling hot-dry extremes has become significantly stronger during the past six decades. The stronger hot-dry coupling in southern EMC is associated with anomalies in large-scale circulations, such as reduced total cloud cover, abnormal anticyclones in the upper atmosphere, intense descending motion, and strong moisture divergence over this region. Land-atmosphere feedback enhance the hot-dry coupling in southern EMC by increasing land surface dryness (seen as a decrease in the evaporation fraction). The decreasing evaporation fraction is associated with drying surface soil moisture, controlled by decreases in pre-summer 1-m soil moisture and summer-mean precipitation. Given hot extremes are projected to increase and atmospheric humidity is predicted to decrease in the future, it is very likely that increasing hot-dry days and associated disasters will be witnessed in monsoon regions, which should be mitigated against by adopting adaptive measures.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO