Your search found 2 records
1 He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B. A.. 2021. Future global urban water scarcity and potential solutions. Nature Communications, 12:4667. [doi: https://doi.org/10.1038/s41467-021-25026-3]
Water scarcity ; Urbanization ; Urban population ; Towns ; Climate change mitigation ; Water demand ; Water availability ; Water use efficiency ; Water stress ; Transfer of waters ; Virtual water ; Infrastructure ; Sustainability ; Socioeconomic development
(Location: IWMI HQ Call no: e-copy only Record No: H050694)
https://www.nature.com/articles/s41467-021-25026-3.pdf
https://vlibrary.iwmi.org/pdf/H050694.pdf
(1.64 MB) (1.64 MB)
Urbanization and climate change are together exacerbating water scarcity—where water demand exceeds availability—for the world’s cities. We quantify global urban water scarcity in 2016 and 2050 under four socioeconomic and climate change scenarios, and explored potential solutions. Here we show the global urban population facing water scarcity is projected to increase from 933 million (one third of global urban population) in 2016 to 1.693–2.373 billion people (one third to nearly half of global urban population) in 2050, with India projected to be most severely affected in terms of growth in water-scarce urban population (increase of 153–422 million people). The number of large cities exposed to water scarcity is projected to increase from 193 to 193–284, including 10–20 megacities. More than two thirds of water-scarce cities can relieve water scarcity by infrastructure investment, but the potentially significant environmental trade-offs associated with large-scale water scarcity solutions must be guarded against.

2 Lin, J.; Bryan, B. A.; Zhou, X.; Lin, P.; Do, H. X.; Gao, L.; Gu, X.; Liu, Z.; Wan, L.; Tong, S.; Huang, J.; Wang, Q.; Zhang, Y.; Gao, H.; Yin, J.; Chen, Z.; Duan, W.; Xie, Z.; Cui, T.; Liu, J.; Li, M.; Li, X.; Xu, Z.; Guo, F.; Shu, L.; Li, B.; Zhang, J.; Zhang, P.; Fan, B.; Wang, Y.; Zhang, Y.; Huang, J.; Li, X.; Cai, Y.; Yang, Z. 2023. Making China’s water data accessible, usable and shareable. Nature Water, 1:328-335. [doi: https://doi.org/10.1038/s44221-023-00039-y]
Water resources ; Data collection ; Databases ; Monitoring ; Modelling ; Water quality ; Wastewater treatment ; Stream flow ; Transboundary waters ; Water demand ; Infrastructure ; Policies / China
(Location: IWMI HQ Call no: e-copy only Record No: H052133)
https://vlibrary.iwmi.org/pdf/H052133.pdf
(1.42 MB)
Water data are essential for monitoring, managing, modelling and projecting water resources. Yet despite such data—including water quantity, quality, demand and ecology—being extensively collected in China, it remains difficult to access, use and share them. These challenges have led to poor data quality, duplication of effort and wasting of resources, limiting their utility for supporting decision-making in water resources policy and management. In this Perspective we discuss the current state of China’s water data collection, governance and sharing, the barriers to open-access water data and its impacts, and outline a path to establishing a national water data infrastructure to reform water resource management in China and support global water-data sharing initiatives.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO