Your search found 3 records
1 Mekuria, Wolde; Hadgu, K. M.; Desta, L. T. 2014. The role of trees in regulating soil erosion. In de Leeuw, J.; Njenga, M.; Wagner, B.; Iiyama, M. (Eds.). Treesilience: an assessment of the resilience provided by trees in the drylands of Eastern Africa. Nairobi, Kenya: World Agroforestry Centre (ICRAF) pp.94-97.
Trees ; Soil erosion ; Soil conservation ; Soil fertility ; Soil water ; Land management ; Sediment ; Arid zones
(Location: IWMI HQ Call no: e-copy only Record No: H046287)
http://www.worldagroforestry.org/downloads/publications/PDFs/B17611.PDF
https://vlibrary.iwmi.org/pdf/H046287.pdf
(0.33 MB) (4.69 MB)

2 Haileselassie, H.; Araya, A.; Habtu, S.; Meles, K. G.; Gebru, G.; Kisekka, I.; Girma, A.; Hadgu, K. M.; Foster, A. J. 2016. Exploring optimal farm resources management strategy for Quncho-teff (Eragrostis tef (Zucc.) Trotter) using AquaCrop model. Agricultural Water Management, 178:148-158. [doi: https://doi.org/10.1016/j.agwat.2016.09.002]
Crop management ; Eragrostis tef ; Irrigation water ; Water productivity ; Models ; Farm management ; Strategies ; Crop yield ; Fertilizer application ; Sowing date ; Soil water characteristics ; Chemicophysical properties ; Rain ; Biomass ; Canopy ; Experimentation / Ethiopia / Mekelle
(Location: IWMI HQ Call no: e-copy only Record No: H047852)
https://vlibrary.iwmi.org/pdf/H047852.pdf
(1.52 MB)
Teff is a major staple food crop in Ethiopia. Moisture and soil fertility are the two major factors limiting teff yield. Studies were conducted across three sites in Ethiopa [Mekelle (MK) in 2012 and 2016, Ilala (IL) in 2012 and Debrezeit (DZ) in 2009 and 2010]. The objectives of these studies were (1) to assess the response of Quncho-teff to different fertilizer and irrigation levels; 2) to quantify irrigation water productivity (IWP), and (3) to collect data to calibrate and validate AquaCrop model for simulating yield and evaluate optimal irrigation and sowing date strategy for Quncho-teff at different locations in Ethiopia. The different fertilizer levels were: 1) 64 kg N and 46 kg P/ha (N2P2); 2); 32 kg N and 23 kg P/ha (N1P1); 3) 0 kg N and 0 kg P/ha (N0P0) and 4) 52 kg N and 46 kg P/ha (N3P3). The four irrigation treatments were: zero (rainfed), two, four and full irrigation applications. Findings showed that full irrigation in combination with high fertilizer (N2P2) could give better yield. However, during abnormal rainfall, spreading the available fertilizer at a rate of 32 kg N and 23 kg P/ha may be preferable to applying 64 kg N and 46 kg P/ha. This study also indicated that the regional fertilizer recommendations for teff need to be revised taking in to account the soil characteristics, climate and irrigation water availability. The AquaCrop model was able to simulate the observed canopy cover, soil water, biomass and yield of teff satisfactorily. Canopy cover was simulated with normalized root mean square error (NRMSE), index of agreement (I) and R2 of 7%, 0.5 and 0.8, respectively. Soil moisture during the season was simulated with NRMSE of 11.4–15.7%, I of 0.99 and R2 of 0.85–0.9. Simulated final aboveground biomass values were in close agreement with the measured (NRMSE, 7.8%, I, 0.89 and R2, 0.66). There was also good agreement between simulated and measured grain yield with NRMSE, I and R2 values of 10.9%, 0.93, 0.80, respectively. Scenario analysis indicated that early sowing was the best option to maximize teff yield with the least amount of irrigation. Scenario analysis also showed that one irrigation during flowering stage could substantially improve irrigation water productivity (IWP) of teff and minimize the yield loses which could occur due to shifting of sowing date from early to normal. Two irrigation applications also substantially improved the yield and IWP of late sown teff. However, to get high yield, a late sown teff should receive at least four irrigation applications during the mid-growth stage of the crop. These results suggest that AquaCrop model can be used to identify optimal farm resource management strategies for teff production.

3 Negussie, A.; Achten, W. M. J.; Norgrove, L.; Mekuria, Wolde; Hadgu, K. M.; De Both, G.; Leroy, B.; Hermy, M.; Muys, B. 2016. Initial effects of fertilization and canopy management on flowering and seed and oil yields of Jatropha curcas L. in Malawi. BioEnergy Research, 9:1231-1240. [doi: https://doi.org/10.1007/s12155-016-9767-6]
Fertilizer application ; Fertilization ; Nitrogen fertilizers ; Inorganic fertilizers ; Canopy ; Flowering ; Seed production ; Oilseeds ; Jatropha curcas ; Biofuels ; Bioenergy ; Agronomy ; Agronomic practices ; Pruning implements ; Planting ; Spacing ; Soil sampling / Malawi
(Location: IWMI HQ Call no: e-copy only Record No: H047879)
https://vlibrary.iwmi.org/pdf/H047879.pdf
Appropriate canopy management, including planting density and pruning, and application of fertilizer may increase flowering success and seed and oil yields of Jatropha curcasL.Twofieldexperimentswereperformedfrom2009to 2011 in Balaka, Malawi, to assess the effect of planting density and pruning regime and single fertilizer application (N, P, and K) on male and female flower number and seed and oil yields of J. curcas. Planting density influenced flower sex ratio and female flower number. Branch pruning treatments did not influence the flower sex ratio but reduced seed and final oil yield by 55 % in the following year. It is claimed that J.curcas can be grown on soils with low nutrient content, but this study revealed that yield was low for non-fertilized trees. WeobservedhigherseedandoilyieldsathigherNapplication rates(upto203±42%seedand204±45%oilyieldincrease) compared with the non-fertilized control. The study suggests thatcurrentlyusedheavypruningpracticeisnotrecommended for J.curcas cultivation, although it needs further longer term investigation. Applying nitrogen fertilizer is effective in increasing yield.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO