Your search found 2 records
1 Maes, W. H.; Trabucco, Antonio; Achten, W. M. J.; Muys, B. 2009. Climatic growing conditions of Jatropha curcas L. Biomass and Bioenergy, 33:1481-1485. [doi: https://doi.org/10.1016/j.biombioe.2009.06.001]
Jatropha curcas ; Crops ; Climate / Mexico / Central America
(Location: IWMI HQ Call no: e-copy only Record No: H042320)
https://vlibrary.iwmi.org/pdf/H042320.pdf
(0.23 MB)
The massive investment in new jatropha plantations worldwide is not sufficiently based on a profound scientific knowledge of its ecology. In this article, we define the climatic conditions in its area of natural distribution by combining the locations of herbarium specimens with corresponding climatic information, and compare these conditions with those in 83 jatropha plantations worldwide. Most specimens (87%) were found in tropical savannah and monsoon climates (Am, Aw) and in temperate climates without dry season and with hot summer (Cfa), while very few were found in semi-arid (BS) and none in arid climates (BW). Ninety-five percent of the specimens grew in areas with a mean annual rainfall above 944 mm year1 and an average minimum temperature of the coldest month (Tmin) above 10.5 C. The mean annual temperature range was 19.3–27.2 C. The climatic conditions at the plantations were different from those of the natural distribution specimens for all studied climatic variables, except average maximum temperature in the warmest month. Roughly 40% of the plantations were situated in regions with a drier climate than in 95% of the area of the herbarium specimens, and 28% of the plantations were situated in areas with Tmin below 10.5 C. The observed precipitation preferences indicate that jatropha is not common in regions with arid and semi-arid climates. Plantations in arid and semi-arid areas hold the risk of low productivity or irrigation requirement. Plantations in regions with frost risk hold the risk of damage due to frost.

2 Negussie, A.; Achten, W. M. J.; Norgrove, L.; Mekuria, Wolde; Hadgu, K. M.; De Both, G.; Leroy, B.; Hermy, M.; Muys, B. 2016. Initial effects of fertilization and canopy management on flowering and seed and oil yields of Jatropha curcas L. in Malawi. BioEnergy Research, 9:1231-1240. [doi: https://doi.org/10.1007/s12155-016-9767-6]
Fertilizer application ; Fertilization ; Nitrogen fertilizers ; Inorganic fertilizers ; Canopy ; Flowering ; Seed production ; Oilseeds ; Jatropha curcas ; Biofuels ; Bioenergy ; Agronomy ; Agronomic practices ; Pruning implements ; Planting ; Spacing ; Soil sampling / Malawi
(Location: IWMI HQ Call no: e-copy only Record No: H047879)
https://vlibrary.iwmi.org/pdf/H047879.pdf
Appropriate canopy management, including planting density and pruning, and application of fertilizer may increase flowering success and seed and oil yields of Jatropha curcasL.Twofieldexperimentswereperformedfrom2009to 2011 in Balaka, Malawi, to assess the effect of planting density and pruning regime and single fertilizer application (N, P, and K) on male and female flower number and seed and oil yields of J. curcas. Planting density influenced flower sex ratio and female flower number. Branch pruning treatments did not influence the flower sex ratio but reduced seed and final oil yield by 55 % in the following year. It is claimed that J.curcas can be grown on soils with low nutrient content, but this study revealed that yield was low for non-fertilized trees. WeobservedhigherseedandoilyieldsathigherNapplication rates(upto203±42%seedand204±45%oilyieldincrease) compared with the non-fertilized control. The study suggests thatcurrentlyusedheavypruningpracticeisnotrecommended for J.curcas cultivation, although it needs further longer term investigation. Applying nitrogen fertilizer is effective in increasing yield.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO