Your search found 3 records
1 Ismail-Zadeh, A.; Fucugauchi, J. U.; Kijko, A.; Takeuchi, K.; Zaliapin, I. (Eds.) 2014. Extreme natural hazards, disaster risks and societal implications. Cambridge, UK: Cambridge University Press. 402p. (Special Publications of the International Union of Geodesy and Geophysics Series 1) [doi: https://doi.org/10.1017/CBO9781139523905]
Natural disasters ; Disaster risk management ; Environmental impact assessment ; Climate change ; Early warning systems ; Volcanic eruptions ; Earthquakes ; Landslides ; Hurricanes ; Tsunamis ; Flooding ; Sea level ; Ecosystems ; Models ; Precipitation ; Weather forecasting ; Hydrometeorology ; Geological process ; Satellite observation ; Remote sensing ; Socioeconomic aspects ; Capacity building ; Educational institutions ; Case studies ; Public-private cooperation / South America / Latin America / Africa / Middle East / Africa South of Sahara / Asia Pacific Region / Saudi Arabia / Iran / Thailand / Caribbean / Mexico / Madagascar / Australia / China / Japan / India / Afar Region / Mediterranean Region / Chao Phraya River / Wenchuan / Tohoku
(Location: IWMI HQ Call no: 363.34 G000 ISM Record No: H046897)
http://vlibrary.iwmi.org/pdf/H046897_TOC.pdf
(0.51 MB)

2 Xie, J.; Zhang, K.; Hu, L.; Pavelic, Paul; Wang, Y.; Chen, M. 2015. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China. Hydrogeology Journal, 23(7):1465-1480. [doi: https://doi.org/10.1007/s10040-015-1267-9]
Carbon dioxide ; Carbon sequestration ; Saline water ; Aquifers ; River basins ; Geological process ; Reservoir storage ; Wells ; Temperature ; Porosity ; Permeability / China / Ordos Basin
(Location: IWMI HQ Call no: e-copy only Record No: H047063)
https://vlibrary.iwmi.org/pdf/H047063.pdf
(3.84 MB)
Saline formations are considered to be candidates for carbon sequestration due to their great depths, large storage volumes, and widespread occurrence. However, injecting carbon dioxide into low-permeability reservoirs is challenging. An active demonstration project for carbon dioxide sequestration in the Ordos Basin, China, began in 2010. The site is characterized by a deep, multi-layered saline reservoir with permeability mostly below 1.0×10-14 m2. Field observations so far suggest that only small-to-moderate pressure buildup has taken place due to injection. The Triassic Liujiagou sandstone at the top of the reservoir has surprisingly high injectivity and accepts approximately 80 % of the injected mass at the site. Based on these key observations, a three-dimensional numerical model was developed and applied, to predict the plume dynamics and pressure propagation, and in the assessment of storage safety. The model is assembled with the most recent data and the simulations are calibrated to the latest available observations. The model explains most of the observed phenomena at the site. With the current operation scheme, the CO2 plume at the uppermost reservoir would reach a lateral distance of 658 m by the end of the project in 2015, and approximately 1,000 m after 100 years since injection. The resulting pressure buildup in the reservoir was below 5 MPa, far below the threshold to cause fracturing of the sealing cap (around 33 MPa).

3 Esterhuyse, S. 2017. Developing a groundwater vulnerability map for unconventional oil and gas extraction: a case study from South Africa. Environmental Earth Sciences, 76(17):1-13. [doi: https://doi.org/10.1007/s12665-017-6961-6]
Groundwater assessment ; Gases ; Oils ; Extraction ; Mapping ; Water resources ; Aquifers ; Water quality ; Monitoring ; Indicators ; Water policy ; Hydraulic fracturing ; Geological process ; Environmental Impact Assessment ; Databases ; Case studies / South Africa
(Location: IWMI HQ Call no: e-copy only Record No: H049214)
https://link.springer.com/content/pdf/10.1007%2Fs12665-017-6961-6.pdf
https://vlibrary.iwmi.org/pdf/H049214.pdf
(1.82 MB) (1.82 MB)
Some of the most important issues surrounding unconventional oil and gas (UOG) extraction are the possible impacts of this activity on potable groundwater resources and how to minimise and mitigate such impacts. A groundwater vulnerability map for UOG extraction has been developed as part of an interactive vulnerability map for South Africa in an effort to address such concerns and minimize possible future impacts linked to UOG extraction. This article describes the development of the groundwater theme of the interactive vulnerability map and highlights important aspects that were considered during the development of this map, which would also be of concern to other countries that may plan to embark on UOG extraction. The policy implications of the groundwater vulnerability map for managing UOG extraction impacts is also highlighted in this article.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO