Your search found 4 records
1 Srinivasan, V.; Suresh Kumar, D.; Chinnasamy, P.; Sulagna, S.; Sakthivel, D.; Paramasivam, P.; Lele, S. 2014. Water management in the Noyyal River basin: a situation analysis. Bangalore, India: Ashoka Trust for Research in Ecology and the Environment. 48p. (Environment and Development Discussion Paper 2)
Water management ; River basins ; Water availability ; Water quality ; Watersheds ; Water scarcity ; Surface water ; Drinking water ; Domestic water ; Hydrology ; Demography ; Land use ; Sustainability ; Agricultural sector ; Government departments ; Institutions ; Pumping ; Wells ; Public health ; Environmental flows ; Households ; Farmers / India / Tamil Nadu / Noyyal River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H046359)
http://www.atree.org/sites/default/files/Wm_Noyyal_SA.pdf
https://vlibrary.iwmi.org/pdf/H046359.pdf
(0.91 MB)

2 Chinnasamy, P.; Hubbart, J. A. 2014. Measuring and modeling shallow groundwater flow between a semi-karst border stream and Ozark forested riparian zone in the Central USA. Journal of Scientific Research and Reports, 3(6):844-865.
Groundwater flow ; Flow discharge ; Ecosystems ; Forests ; Riparian zones ; Hydrology ; Models ; Soil hydraulic properties ; Stream flow / USA / Missouri
(Location: IWMI HQ Call no: e-copy only Record No: H046360)
http://www.sciencedomain.org/download.php?f=Chinnasamy362013JSRR7711_1.pdf&aid=3574
https://vlibrary.iwmi.org/pdf/H046360.pdf
(0.52 MB)
Aims: Quantitative information is limited pertaining to riparian forest and stream shallow groundwater interactions particularly in karst hydro-ecosystems. Study Design, Place and Duration: Spatiotemporal variability of shallow groundwater flow was monitored along two stream reaches in a riparian Ozark border forest of central Missouri, United States. Each reach was equipped with twelve piezometers and two stream-gauging stations during the 2011 water year (WY). Methodology: High-resolution (i.e. 15 minute) time-series data were analyzed indicating average groundwater flow per unit stream length was -3 x 10-5 m3 s-1 m-1 (losing stream) for the entire study reach (total reach length = 830m) during the 2011 WY. The HYDRUS – 1D groundwater flow model was forced with observed data and outputs were assessed to improve model end user confidence in karst hydrogeologic systems. Results and Discussion: Results indicate rapid groundwater response to rainfall events within two to 24 hours nine meters from the stream. Analyses indicated average stream flow loss of 28% and 7% total volume to groundwater during winter and spring seasons, respectively. During the dry season (June-September), the stream was gaining 95% of the time. During the wet season (March-June), the stream was losing 70% of the time. Based on established assessment criteria, shallow groundwater modeling performance with HYDRUS – 1D was deemed very good (NS = 0.95, r2 = 0.99, RMSE = 2.38 cm and MD =1.3 cm). Conclusion: Results supply greatly needed baseline information necessary for improved understanding of riparian forest management and shallow groundwater transport and storage processes in semi-karst forest ecosystems.

3 Pavelic, Paul; Sikka, Alok; Alam, Mohammad Faiz; Sharma, Bharat R.; Muthuwatta, Lal; Eriyagama, Nishadi; Villholth, Karen G.; Shalsi, S.; Mishra, V. K.; Jha, S. K.; Verma, C. L.; Sharma, N.; Reddy, V. R.; Rout, S. K.; Kant, L.; Govindan, M.; Gangopadhyay, P.; Brindha, K.; Chinnasamy, P.; Smakhtin, V. 2021. Utilizing floodwaters for recharging depleted aquifers and sustaining irrigation: lessons from multi-scale assessments in the Ganges River Basin, India. Colombo, Sri Lanka: International Water Management Institute (IWMI). 20p. (Groundwater Solutions Initiative for Policy and Practice (GRIPP) Case Profile Series 04) [doi: https://doi.org/10.5337/2021.200]
Groundwater management ; Groundwater recharge ; Aquifers ; Floodwater ; Water use ; Groundwater depletion ; Groundwater irrigation ; Sustainable use ; Groundwater flow ; Transfer of waters ; Flood control ; Groundwater table ; Water storage ; Water quality ; Pumping ; Technology ; Pilot projects ; Assessment ; Risk management ; Cost benefit analysis ; Stakeholders ; Community involvement ; Socioeconomic aspects ; Livelihoods ; Food security ; Irrigated farming ; Environmental impact ; River basins ; Ponds ; Wells ; Monsoons ; Rain ; Drought / India / Ganges River Basin / Ramganga Basin / Uttar Pradesh / Rampur / Jiwai Jadid
(Location: IWMI HQ Call no: IWMI Record No: H050171)
https://gripp.iwmi.org/wp-content/uploads/sites/2/2021/01/GRIPP-Case-Profile-Series-Issue-4.pdf
(3.67 MB)
Pragmatic, cost-effective, socially inclusive and scalable solutions that reduce risks from recurrent cycles of floods and droughts would greatly benefit emerging economies. One promising approach known as Underground Transfer of Floods for Irrigation (UTFI) involves recharging depleted aquifers with seasonal high flows to provide additional groundwater for irrigated agriculture during dry periods, while also mitigating floods. It has been identified that there is potential for implementing the UTFI approach across large parts of South Asia. The first pilot-scale implementation of UTFI was carried out in a rural community of the Indo-Gangetic Plain in India, and performance of the approach was assessed over three years from a technical, environmental, socioeconomic and institutional perspective. The results are promising and show that UTFI has the potential to enhance groundwater storage and control flooding, if replicated across larger scales. The challenges and opportunities for more wide-scale implementation of UTFI are identified and discussed in this report. In areas with high potential for implementation, policy makers should consider UTFI as an option when making decisions associated with relevant water-related development challenges.

4 Srivastava, A.; Chinnasamy, P.. 2021. Water management using traditional tank cascade systems: a case study of semi-arid region of southern India. SN Applied Sciences, 3(3):281. [doi: https://doi.org/10.1007/s42452-021-04232-0]
Water management ; Tank irrigation ; Traditional methods ; Semiarid zones ; Water storage ; Water balance ; Water budget ; Hydrology ; Groundwater recharge ; Water availability ; Sustainability ; Surface water ; Rain ; Evapotranspiration ; River basins ; Catchment areas ; Runoff ; Land use change ; Land cover change ; Case studies / India / Tamil Nadu / Madurai / Vandiyur Tank Cascade System / Vaigai River
(Location: IWMI HQ Call no: e-copy only Record No: H050279)
https://link.springer.com/content/pdf/10.1007/s42452-021-04232-0.pdf
https://vlibrary.iwmi.org/pdf/H050279.pdf
(12.70 MB) (12.7 MB)
Most arid and semi-arid regions of the Southern-Indian peninsula experience frequent drought. To combat this, historically many water recharge structures, such as tank cascade systems, have been constructed. However, in recent years, performance of these tanks, especially for irrigation and groundwater recharge, is limited due to impacts of external factors that are not scientifically understood. This study, for the first time, aimed to explore spatio-temporal variation of water mass balance components and their impact on the Vandiyur tank cascade system (VTCS) in the city of Madurai, India. Study estimated water mass balance components for rural, peri-urban, and urban catchments across VTCS. Catchment-specific algorithms and water budget equation were used to estimate the volume of hydrological parameters. Additionally, land use/land cover maps were developed to understand the significance of using a water balance approach in understanding the behavior of hydrological components governing the water budget of a catchment. Results indicated a rapid increase in the urban area, up to 300%, in peri-urban and urban regions. Urbanization was considered the primary cause of high catchment runoff (40–60% of rainfall). Due to this, seasonal water availability within each tank across catchment was observed inconsistent (0–15%), wherein summer recorded approximately the least tank storage (0–8%). In general, study provided an approach for a practical, water-focused application demonstrating how the principles of mass balance can help to foster robust water accounting, monitoring, and management. It further emphasized the use of a water balance approach in identifying vulnerable catchments for appropriate tank-rehabilitation-based interventions.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO