Your search found 3 records
1 Zegeye, A. D.; Tebebu, T. Y.; Abiy, A. Z.; Dahlke, H. E.; White, E. D.; Collick, A. S.; Kidnau, S.; Dadgari, F.; McCartney, Matthew; Steenhuis, T. S. 2009. Assessment of hydrological and landscape controls on gully formation and upland erosion near Lake Tana. In Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra (Comps.). Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.162-169.
Hydrology ; Water erosion ; Highlands ; Watersheds ; Simulation models / Africa / Ethiopia / Gilgil Abay Basin / Debre-Mewi Watershed / Lake Tana
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042516)
https://publications.iwmi.org/pdf/H042516.pdf
https://vlibrary.iwmi.org/pdf/H042516.pdf
(0.62 MB)
Gully formation and upland erosion were studied in the Debre-Mewi Watershed in the Gilgil Abay Basin south of Lake Tana. Gully erosion rates were found to be equivalent to over 500 tonnes/ha/year for the 2008 rainy season when averaged over the contributing watershed. Upland erosion rates were twentyfold less. Gully formation is accelerated when the soils are saturated with water as indicated by water table readings above bottom of the gully. Similarly, upland erosion was accelerated when the fields were close to saturation during the occurrence of a rainfall event. Height of the water table is an important parameter determining the amount of erosion and should, therefore, be included in simulation models.

2 Kourakos, G.; Dahlke, H. E.; Harter, T. 2019. Increasing groundwater availability and seasonal base flow through agricultural managed aquifer recharge in an irrigated basin. Water Resources Research, 55(9):7464-7492. [doi: https://doi.org/10.1029/2018WR024019]
Water availability ; Groundwater table ; Agriculture ; Groundwater recharge ; Aquifers ; Water storage ; Water depletion ; Water levels ; Surface water ; Stream flow ; Ecosystems ; Water balance ; Drought ; Models / USA / California / Central Valley
(Location: IWMI HQ Call no: e-copy only Record No: H049452)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018WR024019
https://vlibrary.iwmi.org/pdf/H049452.pdf
(7.63 MB) (7.63 MB)
Groundwater aquifers provide an important “insurance” against climate variability. Due to prolonged droughts and/or irrigation demands, groundwater exploitation results in significant groundwater storage depletion. Managed aquifer recharge (MAR) is a promising management practice that intentionally places or retains more water in groundwater aquifers than would otherwise naturally occur. In this study, we examine the possibility of using large irrigated agricultural areas as potential MAR locations (Ag-MAR). Using the California Central Valley Groundwater-Surface Water Simulation Model we tested four different agricultural recharge land distributions, two streamflow diversion locations, eight recharge target amounts, and five recharge timings. These scenarios allowed a systematic evaluation of Ag-MAR on changes in regional, long-term groundwater storage, streamflow, and groundwater levels. The results show that overall availability of stream water for recharge is critical for Ag-MAR systems. If stream water availability is limited, longer recharge periods at lower diversion rates allow diverting larger volumes and more efficient recharge compared to shorter diversion periods with higher rates. The recharged stream water increases both groundwater storage and net groundwater contributions to streamflow. During the first decades of Ag-MAR operation, the diverted water contributed mainly to groundwater storage. After 80 years of Ag-MAR operation about 34% of the overall diverted water remained in groundwater storage while 66% discharged back to streams, enhancing base flow during months with no recharge diversions. Groundwater level rise is shown to vary with the spatial and temporal distribution of Ag-MAR. Overall, Ag-MAR is shown to provide long-term benefits for water availability, in groundwater and in streams.

3 Grinshpan, M.; Furman, A.; Dahlke, H. E.; Raveh, E.; Weisbrod, N. 2021. From managed aquifer recharge to soil aquifer treatment on agricultural soils: concepts and challenges. Agricultural Water Management, 255:106991. (Online first) [doi: https://doi.org/10.1016/j.agwat.2021.106991]
Aquifers ; Groundwater recharge ; Agricultural soils ; Wastewater treatment plants ; Sustainability ; Wastewater irrigation ; Infiltration ; Water quality ; Contaminants ; Flood irrigation ; Farmland / Israel / Australia / South Africa / Belgium / USA
(Location: IWMI HQ Call no: e-copy only Record No: H050538)
https://vlibrary.iwmi.org/pdf/H050538.pdf
(5.28 MB)
Water is a limiting factor for economic and social development in most arid and semi-arid regions on Earth. The deliberate recharge of depleted aquifer storage and later recovery, known as managed aquifer recharge (MAR), is an important tool for water management and sustainability. Increasing stresses on groundwater and subsequent overdrafts have sparked the development of several advanced MAR technologies, including soil aquifer treatment (SAT). SAT is a method that recharges wastewater effluent through intermittent percolation in infiltration basins. Another emerging MAR approach currently explored is the off-season flooding of agricultural lands, known as agricultural MAR, or Ag-MAR. Utilizing agricultural fields as temporary infiltration basins during periods of dormancy increases the availability of land resources for groundwater recharge, rather than designating land explicitly for MAR. As land resources for SAT become limited and the amount of available treated wastewater (TWW) increases, we propose the idea of agricultural SAT, or Ag-SAT, as a combination of SAT and Ag-MAR. This review paper aims to provide an in-depth look into the approach and application of Ag-MAR and the possibilities of integrating Ag-MAR with SAT. Ag-SAT comprises the off-season flooding of agricultural land using TWW for groundwater recharge and subsequent reuse. Ag-SAT could provide alternative infiltration sites for SAT where available surface area dedicated to infiltration is becoming a limiting factor. Additionally, the treated wastewater could potentially provide nutrients to agricultural fields during the flooding cycles. Potential advantages, disadvantages, and knowledge gaps related to Ag-SAT are presented and discussed.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO