Your search found 8 records
1 Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J. C. B.; Kharrou, M. H.; Khabba, S.; Mougenot, B.; Olioso, A.; Rodriguez, J. C.; Simonneaux, V. 2006. Monitoring wheat phenology and irrigation in Central Morocco: On the use of Relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 79(1):1-27.
Wheat ; Evapotranspiration ; Irrigated farming ; Crop production ; Monitoring ; Remote sensing / Morocco
(Location: IWMI-HQ Call no: PER Record No: H038283)

2 Chaponniere, Anne; Boulet, G.; Chehbouni, A.; Aresmouk, A. 2008. Understanding hydrological processes with scarce data in a mountain environment. Hydrological Processes, 22(12):1908-1921. [doi: https://doi.org/10.1002/hyp.6775]
Hydrology ; Simulation models ; Calibration ; Stream flow ; Measurement ; Time series analysis ; Remote sensing ; Precipitation ; Water balance ; Highlands ; Mountains ; Watersheds ; Reservoirs ; Snow cover ; Geology ; Topography ; Land use ; Soil types ; Groundwater ; Evapotranspiration ; Runoff ; Infiltration ; Percolation / Morocco / Rheraya Watershed / Atlas Mountains
(Location: IWMI HQ Call no: e-copy only Record No: H042330)
https://vlibrary.iwmi.org/pdf/H042330.pdf
(2.48 MB)
Performance of process-based hydrological models is usually assessed through comparison between simulated and measured streamflow. Although necessary, this analysis is not sufficient to estimate the quality and realism of the modelling since streamflow integrates all processes of the water cycle, including intermediate production or redistribution processes such as snowmelt or groundwater flow. Assessing the performance of hydrological models in simulating accurately intermediate processes is often difficult and requires heavy experimental investments. In this study, conceptual hydrological modelling (using SWAT) of a semi-arid mountainous watershed in the High Atlas in Morocco is attempted. Our objective is to analyse whether good intermediate processes simulation is reached when global-satisfying streamflow simulation is possible. First, parameters presenting intercorrelation issues are identified: from the soil, the groundwater and, to a lesser extent, from the snow. Second, methodologies are developed to retrieve information from accessible intermediate hydrological processes. A geochemical method is used to quantify the contribution of a superficial and a deep reservoir to streamflow. It is shown that, for this specific process, the model formalism is not adapted to our study area and thus leads to poor simulation results. A remote-sensing methodology is proposed to retrieve the snow surfaces. Comparison with the simulation shows that this process can be satisfyingly simulated by the model. The multidisciplinary approach adopted in this study, although supported by the hydrological community, is still uncommon.

3 Brouziyne, Y.; Abouabdillah, A.; Chehbouni, A.; Hanich, L.; Bergaoui, Karim; McDonnell, Rachael; Benaabidate, L. 2020. Assessing hydrological vulnerability to future droughts in a Mediterranean watershed: combined indices-based and distributed modeling approaches. Water, 12(9):2333. (Special issue: Modeling Global Change Impacts on Water Resources: Selected Papers from the 2019/2020 SWAT International Conferences) [doi: https://doi.org/10.3390/w12092333]
Climate change ; Drought ; Vulnerability ; Hydrological factors ; Weather forecasting ; Modelling ; Water resources ; Watersheds ; Water yield ; Meteorological factors ; Risk management ; Precipitation ; Rain ; Temperature ; Land use ; Runoff ; Evapotranspiration / Mediterranean Region / Morocco / Bouregreg Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H049879)
https://www.mdpi.com/2073-4441/12/9/2333/pdf
https://vlibrary.iwmi.org/pdf/H049879.pdf
(6.58 MB) (6.58 MB)
Understanding the spatiotemporal distribution of future droughts is essential for effective water resource management, especially in the Mediterranean region where water resources are expected to be scarcer in the future. In this study, we combined meteorological and hydrological drought indices with the Soil and Water Assessment Tool (SWAT) model to predict future dry years during two periods (2035–2050and 2085–2100) in a typical Mediterranean watershed in Northern Morocco, namely, Bouregreg watershed. The developed methodology was then used to evaluate drought impact on annual water yields and to identify the most vulnerable sub-basins within the study watershed. Two emission scenarios (RCP4.5 and RCP8.5) of a downscaled global circulation model were used to force the calibrated SWAT model. Results indicated that Bouregreg watershed will experience several dry years with higher frequency especially at the end of current century. Significant decreases of annual water yields were simulated during dry years, ranging from -45.6% to -76.7% under RCP4.5, and from -66.7% to -95.6% under RCP8.5, compared to baseline. Overall, hydrologic systems in sub-basins under the ocean or high-altitude influence appear to be more resilient to drought. The combination of drought indices and the semi-distributed model offer a comprehensive tool to understand potential future droughts in Bouregreg watershed.

4 Brouziyne, Youssef; Abouabdillah, A.; Bouchaou, L.; Attar, O.; Ez-zaouy, Y.; Benaabidate, L.; Chehbouni, A.. 2022. Toward better preparedness of Mediterranean rainfed agricultural systems to future climate-change-induced water stress: study case of Bouregreg Watershed (Morocco). Environmental Sciences Proceedings, 16(1):58. [doi: https://doi.org/10.3390/environsciproc2022016058]
Rainfed agriculture ; Agricultural systems ; Water stress ; Climate change ; Forecasting ; Drought ; Crop yield ; Watersheds ; Catchment areas ; Water resources ; Water availability ; Models / Mediterranean Region / Morocco / Bouregreg Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H051244)
https://www.mdpi.com/2673-4931/16/1/58/pdf?version=1655352260
https://vlibrary.iwmi.org/pdf/H051244.pdf
(1.82 MB) (1.82 MB)
Improving the preparedness of agricultural systems to future climate-change-induced phenomena, such as drought-induced water stress, and the predictive analysis of their vulnerability is crucial. In this study, a hybrid modeling approach based on the SWAT model was built to understand the response of major crops and streamflow in the Bouregreg catchment in Morocco to future droughts. During dry years, the simulation results showed a dramatic decrease in water resources availability (up to -40%) with uneven impacts across the study catchment area. Crop-wise, significant decreases in rainfed wheat productivity (up to -55%) were simulated during future extremely dry growing seasons.

5 Ez-zaouy, Y.; Bouchaou, L.; Saad, A.; Hssaisoune, M.; Brouziyne, Youssef; Dhiba, D.; Chehbouni, A.. 2022. Groundwater resources in Moroccan coastal aquifers: insights of salinization impact on agriculture. Environmental Sciences Proceedings, 16(1):48. [doi: https://doi.org/10.3390/environsciproc2022016048]
Groundwater ; Water resources ; Coastal aquifers ; Salinization ; Agriculture ; Seawater ; Saltwater intrusion ; Irrigation water ; Water pollution ; Physicochemical properties ; Parameters / Morocco
(Location: IWMI HQ Call no: e-copy only Record No: H051245)
https://www.mdpi.com/2673-4931/16/1/48/pdf?version=1655370566
https://vlibrary.iwmi.org/pdf/H051245.pdf
(0.46 MB) (468 KB)
Across several coastal areas in Morocco, groundwater is the strategic source of irrigation. In this work, a database of thirteen Moroccan coastal aquifers was used to assess groundwater for agriculture purposes, as well as to highlight the process responsible of the degradation of groundwater resource quality in Moroccan coastal areas. According to electrical conductivity parameter, the results show that 92% of the collected samples were not suitable for irrigation uses. This situation is due to seawater intrusion and water–rock interaction processes, in addition to intensive agriculture activities and the introduction of domestic and industrial wastewater without any treatment. In order to control the impact of groundwater salinity on agriculture, management plans are proposed.

6 Epule, T. E.; Chehbouni, A.; Ongoma, V.; Brouziyne, Youssef; Etongo, D.; Molua, E. L. 2022. A new index on agricultural land greenhouse gas emissions in Africa. Environmental Monitoring and Assessment, 194(9):598. [doi: https://doi.org/10.1007/s10661-022-10196-4]
Greenhouse gas emissions ; Agricultural land ; Carbon dioxide ; Methane emission ; Nitrous oxide ; Climate change adaptation ; Climate change mitigation ; Vulnerability ; Spatial distribution ; Time series analysis / North Africa / West Africa / Middle Africa / East Africa / Southern Africa
(Location: IWMI HQ Call no: e-copy only Record No: H051387)
https://vlibrary.iwmi.org/pdf/H051387.pdf
(1.27 MB)
Africa emits the lowest amounts of greenhouse gases (GHGs) into the global GHG budget. However, the continent remains the most vulnerable continent to the effects of climate change. The agricultural sector in Africa is among the most vulnerable sectors to climate change. Also, as a dominant agricultural sector, African agriculture is increasingly contributing to climate change through GHG emissions. Research has so far focused on the effects of GHG emissions on the agricultural and other sectors with very little emphasis on monitoring and quantifying the spatial distribution of GHG emissions from agricultural land in Africa. This study develops a new index: African Agricultural Land Greenhouse Gas Index (AALGGI) that uses scores and specific scale ranges for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) to map the spatial variations in regional GHG emissions across Africa. The data for the three main GHGs (CO2, CH4, and N20) were downloaded from FAOSTAT. The data were analyzed through the newly developed African Agricultural Land Greenhouse Gas Index (AALGGI). This is an empirical index with scores ranging from 0 to 10, with higher scores indicating higher levels of emissions. The results show that Southern and North African regions have the lowest amounts of agricultural land GHG emissions, with AALGGIs of 3.5 and 4.5, respectively. East Africa records the highest levels of GHG emissions, with an AALGGI of 8 followed by West Africa with an AALGGI of 7.5. With the continental mean or baseline AALGGI being 5.8, East and Middle Africa are above the mean AALGGI. These results underscore the fact that though Africa, in general, is not a heavy emitter of GHGs, African agricultural lands are increasingly emitting more GHGs into the global GHG budget. The low AALGGIs in the more developed parts of Africa such as Southern and North Africa are explained by their domination in other GHG emitting sectors such as industrialization and energy. The high rates of emissions in East Africa and Middle Africa are mainly linked to intensive traditional farming practices/processes and deforestation. These findings underscore the need to further leverage climate change mitigation actions and policy in Africa and most importantly the co-benefits of mitigation and adaptations in the most vulnerable regions.

7 Ali, A. A.; Bouchaou, L.; Er-Raki, S.; Hssaissoune, M.; Brouziyne, Youssef; Ezzahar, J.; Khabba, S.; Chakir, A.; Labbaci, A.; Chehbouni, A.. 2023. Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: combined Eddy-Covariance measurement and soil water balance-based approach. Agricultural Water Management, 275:107997. [doi: https://doi.org/10.1016/j.agwat.2022.107997]
Irrigated farming ; Citrus ; Evapotranspiration ; Deep percolation ; Semiarid climate ; Commercial farming ; Soil water balance ; Energy balance ; Agriculture ; Water management ; Irrigation management ; Irrigation scheduling ; Water supply ; Water stress ; Rain ; Crop water use ; Mediterranean climate ; Eddy covariance / Morocco / Souss-Massa
(Location: IWMI HQ Call no: e-copy only Record No: H051504)
https://www.sciencedirect.com/science/article/pii/S0378377422005443/pdfft?md5=d4f0a4edbb61d5f3f910c624caa72c48&pid=1-s2.0-S0378377422005443-main.pdf
https://vlibrary.iwmi.org/pdf/H051504.pdf
(3.43 MB) (3.43 MB)
An accurate estimate of crop coefficient (Kc) values at different development stages (Kcini, Kcmid, and Kcend) is crucial for assessing crop water requirements in semi-arid regions. The objectives of this study were first to quantify the reference evapotranspiration (ETo) and to calculate the actual evapotranspiration (ETa) over citrus in a semi-arid climate under drip irrigation. For this purpose, a site of a citrus orchard in Souss-Massa, planted with the Esbal variety of clementine, was equipped with an Eddy-Covariance (EC) system, and sensors to measure radiation, soil heat flux, and micrometeorological forcing data, during 2020 and 2021 seasons. Also, the soil moisture content at various soil depths in the root zone near the EC tower was monitored. The energy balance closure (EBC) approach was adopted for flux assessment to ensure a quality check for the EC measurements. The obtained EBCs were about 82% and 79% for the daily measurements in 2020 and 2021, respectively, which can be considered acceptable considering the nature of the citrus orchard (relatively tall and sparse). Second, the study aimed to estimate actual Kc act values for citrus under the same irrigation strategy. The derived values were compared to different recommended Kc values in the literature. In the third stage, this work aimed to offer an alternative plan to sustainable irrigation management by elaborating an irrigation schedule for citrus crops in the region using the FAO-56 simple approach to avoid water stress and deep percolation (i.e., Ks = 1 and DP = 0). Eventually, an irrigation schedule was drawn following the crop’s phenological stages. The seasonal mean citrus evapotranspiration (ETa) values are 1.68, 3.02, and 1.86 mm/day for the initial, mid, and end-season. The seasonal actual Kc act values were 0.64, 0.58, and 0.64 for Kcini, Kcmid, and Kcend, respectively. Additionally, the application of the water balance equation revealed that a large quantity of water is lost through deep percolation (52% of total water supplied). The study focuses on Citrus trees being a strategic crop with important socio-economic values in the Souss-Massa region. Thus, the results should support both scientists and farmers in planning and strategy development.

8 Attar, O.; Brouziyne, Youssef; Bouchaou, L.; El Bilali, A.; Ait Brahim, Y.; Chehbouni, A.. 2024. Understanding the trade-offs between climate change-induced aridity and agricultural water demand in the Souss Basin, Morocco. Frontiers in Water, 6:1270078. [doi: https://doi.org/10.3389/frwa.2024.1270078]
Climate change ; Arid zones ; Agricultural water management ; Water demand ; Decision-support systems ; Water allocation ; Modelling / Morocco / Souss Basin
(Location: IWMI HQ Call no: e-copy only Record No: H052704)
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2024.1270078/pdf?isPublishedV2=false
https://vlibrary.iwmi.org/pdf/H052704.pdf
(3.39 MB) (3.39 MB)
The concept of integrated water resource management requires an in-depth analysis of water inflows into a river basin. Population growth and the uncertainties associated with climate change are causing increased water stress and droughts, which are impacting agriculture. Hence the need for studies on the impact of climate change on demand-supply interactions in river basins. In this study, a generic decision support system, ModSim, was used; for the first time in the region; to examine the agricultural water usage and demands over Souss basin in Morocco. ModSim was calibrated over the period from 1990 to 2019 using recorded data about physical processes and hydraulic infrastructures features and management. The simulations succeeded in replicating different deficit episodes at the various irrigated perimeters. During the simulated period from 2012 to 2019, it was observed that the water supplies for the different dams in the basin experienced a decline ranging from 38% to 89%. As a result, the average total unmet demand for surface water from reservoirs in irrigated areas reached 201 mm3 between 1990 and 2019 and the monthly average demand increases by 55% in the dry season, compared to the demands in the rest of the year. The significant amount of unmet demand across all sites suggests that demands are satisfied by the withdrawal of water from groundwater resources. The adopted approach has proven to be a useful decision support tool to understand water resources planning challenges. Water managers require such reliable tools to represent the basin's water trade-offs. Thus, additional investigation to improve the representation of groundwater/surface water interaction approaches is required to enhance the evaluation of the consequences of different uses, especially in arid and semi-arid regions with significant water stress such as Souss. A conceptual framework as well as a detailed discussion have been produced in order to guide efficient water management and governance.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO