Your search found 2 records
1 Platonov, Alexander; Thenkabail, Prasad; Biradar, Chandrashekhar M.; Cai, Xueliang; Gumma, Murali Krishna; Dheeravath, Venkateswarlu; Cohen, Y.; Alchanatis, V.; Goldshlager, N.; Ben-Dor, E.; Vithanage, Jagath; Manthrithilake, Herath; Kendjabaev, S.; Isaev, S. 2008. Water productivity mapping (WPM) using Landsat ETM+ data for the irrigated croplands of the Syrdarya River Basin in Central Asia. Sensors, 8:8156-8180.
Water productivity ; Mapping ; Remote sensing ; Water use ; Crops ; Productivity ; Crop yield ; Models ; Evapotranspiration ; Irrigated farming ; River basins / Central Asia / Syr Darya River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H041566)
https://vlibrary.iwmi.org/pdf/H041566.pdf
The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM) using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity) becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1) crop productivity (ton/ha) maps (CPMs) involving crop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2) crop water use (m3/ha) maps (WUMs) (or actual seasonal evapotranspiration or actual ET) developed through Simplified Surface Energy Balance (SSEB) model; and (3) water productivity (kg/m3) maps (WPMs) produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET) by multiplying the ET fraction by reference ET. The ET fraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET) and “cold” pixels (maximum ET). The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3) in water productivity of cotton fields with overwhelming proportion (87%) of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements through better land and water management practices.

2 Cai, Xueliang; Thenkabail, P. S.; Biradar, C. M.; Platonov, Alexander; Gumma, Murali Krishna; Dheeravath, V.; Cohen, Y.; Goldlshleger, F.; Ben-Dor, E.; Alchanatis, V.; Vithanage, Jagath; Anputhas, Markandu. 2009. Water productivity mapping using remote sensing data of various resolutions to support more crop per drop. Journal of Applied Remote Sensing, 3(033557). 23p. [doi: https://doi.org/10.1117/1.3257643]
Water productivity ; Crops ; Water use ; Evapotranspiration ; Mapping ; Remote sensing ; Models / Central Asia / Kyrgyzstan / Tajikistan / Uzbekistan / Kazakhstan / Syr Darya River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H042408)
https://vlibrary.iwmi.org/pdf/H042408.pdf
(4.07 MB)
The overarching goal of this research was to map crop water productivity using satellite sensor data at various spectral, spatial, radiometric, and temporal resolutions involving: (a) Moderate Resolution Imaging Spectroradiometer (MODIS) 500m, (b) MODIS 250m, (c) Landsat enhanced thematic mapper plus (ETM+) 60m thermal, (d) Indian Remote Sensing Satellite (IRS) 23.5 m, and (e) Quickbird 2.44 m data. The spectro-biophysical models were developed using IRS and Quickbird satellite data for wet biomass, dry biomass, leaf area index, and grain yield for 5 crops: (a) cotton, (b) maize, (c) winter wheat, (d) rice, and (e) alfalfa in the Sry Darya basin, Central Asia. Crop-specific productivity maps were developed by applying the best spectro-biophysical models for the respective delineated crop types. Water use maps were produced using simplified surface energy balance (SSEB) model by multiplying evaporative fraction derived from Landsat ETM+ thermal data by potential ET. The water productivity (WP) maps were then derived by dividing the crop productivity maps by water use maps. The results of cotton crop, an overwhelmingly predominant crop in Central Asian Study area, showed that about 55% area had low WP of < 0.3 kg/m3, 34% had moderate WP of 0.3-0.4 kg/m3, and only 11% area had high WP > 0.4 kg/m3. The trends were similar for other crops. These results indicated that there is highly significant scope to increase WP (to grow "more crop per drop") through better water and cropland management practices in the low WP areas, which will substantially enhance food security of the ballooning populations without having to increase: (a) cropland areas, and\or (b) irrigation water allocations.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO