Your search found 2 records
1 Taguta, C.; Senzanje, A.; Kiala, Z.; Malota, M.; Mabhaudhi, Tafadzwanashe. 2022. Water-energy-food nexus tools in theory and practice: a systematic review. Frontiers in Water, 4:837316. [doi: https://doi.org/10.3389/frwa.2022.837316]
Water resources ; Energy ; Food production ; Nexus ; Decision making ; Tools ; Models ; Geographical information systems ; Spatial analysis ; Case studies
(Location: IWMI HQ Call no: e-copy only Record No: H051025)
https://www.frontiersin.org/articles/10.3389/frwa.2022.837316/pdf
https://vlibrary.iwmi.org/pdf/H051025.pdf
(4.70 MB) (4.70 MB)
Sector-based resource management approaches partly contribute to the insecurities in water, energy and food sectors and resources. These approaches fail to acknowledge and capture the interlinkages between these connected resources, a key strength in the water-energy-food (WEF) nexus approach. However, the multi-centric, multidimensional, and spatiotemporally dynamic WEF nexus is complex and uncertain, thus requiring dedicated tools that can unpack it. Various sources have blamed the slow uptake and practical implementation of the WEF nexus on the unavailability of appropriate tools and models. To confirm those claims with evidence, literature on WEF nexus tools was searched from Scopus and Web of Science and systematically reviewed using the PRISMA protocol. It was found that the WEF nexus tools are being developed increasingly, with a current cumulative number of at least 46 tools and models. However, their majority (61%) is unreachable to the intended users. Some available tools are in code format, which can undermine their applicability by users without programming skills. A good majority (70%) lack key capabilities such as geospatial features and transferability in spatial scale and geographic scope. Only 30% of the tools are applicable at local scales. In contrast, some tools are restricted in geographic scope and scale of application, for example, ANEMI 3 and WEF models for large and household scales, respectively. Most (61%) of the tools lack wide application in actual case studies; this was partly attributed to the tools not being readily available. Thus, efforts should be made to disseminate and ensure end-users’ uptake and application of developed tools. Alternatively, the user-friendly tools should be developed on-demand as requested and inspired by potential clients. Developers should consider utility, transferability and scalability across uses and users when improving existing tools and developing new tools so that they are adaptable, only requiring new, specific location-adapted inputs and data. Where and when it is necessary to capture spatial dynamics of the WEF nexus, tools should be geographic information system (GIS)-enabled for automatic WEF nexus location selection, geospatial mapping, and visualization. Such GIS-enabled WEF nexus tools can provide a bird’s eye view of hotspots and champions of WEF nexus practices.

2 Chunga, B. A.; Marx, W.; Cai, Xueliang; de Clercq, W.; Watson, A.; Malota, M.. 2023. Water allocation using system dynamic modelling in the aquaculture integrated with small-scale irrigation systems in Malawi. Physics and Chemistry of the Earth, 129:103355. [doi: https://doi.org/10.1016/j.pce.2022.103355]
Water allocation ; Modelling ; Aquaculture ; Small-scale irrigation ; Decision support systems ; Fish ponds ; Maize ; Crop production ; Soil water balance ; Water depth ; Water-use efficiency ; Biomass production ; Crop yield ; Water resources ; Rainfall ; Rural areas ; Farmers ; Climate change / Malawi / Zomba / Chingale
(Location: IWMI HQ Call no: e-copy only Record No: H051813)
https://vlibrary.iwmi.org/pdf/H051813.pdf
(5.07 MB)
The agricultural sector is faced with numerous challenges including climate change and water scarcity in many developing countries. In order to address scarcity and improve water use efficiency for rural farmers, fish farming is being integrated with small-scale irrigation. However, there are challenges in how to allocate water between the two farming enterprises. This study explored the capabilities of system dynamics to allocate water between a fish pond and a crop field in Chingale, Malawi using a system dynamic software, Vensim™ PLE. For soil water and pond water, a simple water balance structure was built and connected to the crop growth structure. Simulations run for 125 days corresponding to the maize growth period. Model results are similar to the actual yield (about 3.5 ton/ha for hybrid) and biomass production (about 7 ton/ha) in the area. Results also show it was possible to maintain pond water depth at recommended depths for raising fish: fish stocking (1 m), operation of the pond (1.5–2.0 m) and harvesting of the fish (less than 1.2 m) throughout the maize growing period. While the study did not comprehensively build and simulate fish growth, the use of such simple tools would benefit rural farmers with few resources. Based on the promising capabilities and the results of the tool it is recommended that further comprehensive analysis to fully incorporate all key sub-components affecting crop and fish growth be carried out.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO