Your search found 8 records
1 Mabhaudhi, T.; Chimonyo, V. G. P.; Hlahla, S.; Massawe, F.; Mayes, S.; Nhamo, Luxon; Modi, A. T. 2019. Prospects of orphan crops in climate change. Planta, 250(3):695-708. [doi: https://doi.org/10.1007/s00425-019-03129-y]
Climate change adaptation ; Food security ; Food insecurity ; Food systems ; Nutrition ; Genetic diversity ; Sustainability ; Cropping systems ; Water scarcity ; Water use efficiency ; Greenhouse gas emissions ; Agroecosystems ; Agrobiodiversity ; Socioeconomic environment ; Research and development ; Diversification ; Land use
(Location: IWMI HQ Call no: e-copy only Record No: H049145)
https://link.springer.com/content/pdf/10.1007%2Fs00425-019-03129-y.pdf
https://vlibrary.iwmi.org/pdf/H049145.pdf
(0.97 MB) (988 KB)
Orphan crops play an important role in global food and nutrition security, and may have potential to contribute to sustainable food systems under climate change. Owing to reports of their potential under water scarcity, there is an argument to promote them to sustainably address challenges such as increasing drought and water scarcity, food and nutrition insecurity, environmental degradation, and employment creation under climate change. We conducted a scoping review using online databases to identify the prospects of orphan crops to contribute to (1) sustainable and healthy food systems, (2) genetic resources for future crop improvement, and (3) improving agricultural sustainability under climate change. The review found that, as a product of generations of landrace agriculture, several orphan crops are nutritious, resilient, and adapted to niche marginal agricultural environments. Including such orphan crops in the existing monocultural cropping systems could support more sustainable, nutritious, and diverse food systems in marginalised agricultural environments. Orphan crops also represent a broad gene pool for future crop improvement. The reduction in arable land due to climate change offers opportunities to expand the area under their production. Their suitability to marginal niche and low-input environments offers opportunities for low greenhouse gas (GHG) emissions from an agro-ecosystems, production, and processing perspective. This, together with their status as a sub-set of agro-biodiversity, offers opportunities to address socio-economic and environmental challenges under climate change. With research and development, and policy to support them, orphan crops could play an important role in climate-change adaptation, especially in the global south.

2 Mabhaudhi, Tafadzwanashe; Senzanje, A.; Modi, A.; Jewitt, G.; Massawe, F.. (Eds.) 2022. Water - energy - food nexus narratives and resource securities: a global south perspective. Amsterdam, Netherlands: Elsevier. 332p. [doi: https://doi.org/10.1016/C2020-0-03951-4]
Water resources ; Energy resources ; Food security ; Nexus ; Sustainable Development Goals ; Goal 2 Zero hunger ; Goal 6 Clean water and sanitation ; Goal 7 Affordable and clean energy ; Transboundary waters ; Catchment areas ; Public health ; Environmental health ; Ecosystems ; Financing ; Smallholders ; Farmers ; Capacity development ; SADC countries ; Spatial data ; Modelling ; Case studies / Southern Africa / Middle East / North Africa / Latin America / South Asia / South East Asia / United Republic of Tanzania / Malawi / Zimbabwe / Malaysia / Jordan / Morocco / Argentina / Brazil / Songwe River Basin / Tugwi-Mukosi Dam
(Location: IWMI HQ Call no: e-copy SF Record No: H051168)
https://vlibrary.iwmi.org/pdf/H051168_TOC.pdf
(0.13 MB)

3 Mpandeli, S.; Nhamo, L.; Senzanje, A.; Jewitt, G.; Modi, A.; Massawe, F.; Mabhaudhi, Tafadzwanashe. 2022. The water-energy-food nexus: its transition into a transformative approach. In Mabhaudhi, Tafadzwanashe; Senzanje, A.; Modi, A.; Jewitt, G.; Massawe, F. (Eds.). Water - energy - food nexus narratives and resource securities: a global south perspective. Amsterdam, Netherlands: Elsevier. pp.1-13. [doi: https://doi.org/10.1016/B978-0-323-91223-5.00004-6]
Water resources ; Energy ; Food security ; Nexus ; Planning ; Resource management
(Location: IWMI HQ Call no: e-copy only Record No: H051169)
https://vlibrary.iwmi.org/pdf/H051169.pdf
(0.30 MB)
Water, energy, and food are vital resources for human wellbeing. Yet, they are under increased pressure to meet demand from a growing population at a time of worsening insecurity due to depletion and degradation of reserves. These challenges prompted the formulation of the Sustainable Development Goals (SDGs) in 2015. All the 17 SDGs are connected. They recognize that developments in one sector will impact other sectors and that any proposed development must balance socioeconomic and environmental sustainability. Also, as the three resources are the most impacted by climate change, they provide a close link between adaptation, climate system, human society, and the environment. The intricate interlinkages between water, energy, and food resources with the related relationships with socioeconomic development, healthy ecosystems, human development, and sustainable development caused the rapid growth of the water–energy–food (WEF) nexus concept since the United Nations General Assembly of September 2015. Although the concept existed before 2015, its progression increased after the World Economic Forum of 2011 after a presentation by the Stockholm Environment Institute (SEI) in anticipation of the SDGs. This chapter discusses the evolution of the WEF nexus before and after 2015. The emphasis is on the importance of the concept in establishing the interconnectedness of resources and as a guide for coherent policy decisions that lead to sustainable development.

4 Mabhaudhi, Tafadzwanashe; Senzanje, A.; Modi, A.; Jewitt, G.; Massawe, F.. 2022. WEF nexus narratives: toward sustainable resource security. In Mabhaudhi, Tafadzwanashe; Senzanje, A.; Modi, A.; Jewitt, G.; Massawe, F. (Eds.). Water - energy - food nexus narratives and resource securities: a global south perspective. Amsterdam, Netherlands: Elsevier. pp.321-326. [doi: https://doi.org/10.1016/B978-0-323-91223-5.00009-5]
Water resources ; Energy ; Food security ; Nexus ; Sustainable Development Goals
(Location: IWMI HQ Call no: e-copy only Record No: H051173)
https://vlibrary.iwmi.org/pdf/H051173.pdf
(0.07 MB)
The water–food–energy (WEF) nexus narratives is a collection of expert inputs on the concepts, analytical tools and case studies, and key developments on the importance and applicability of the WEF nexus as a transformative and circular approach. This chapter provides a detailed summary of each chapter, providing the reader with what has been achieved through the WEF nexus application. The chapters provide practical applications of integrated resource management and the pathways toward sustainable development. The main subjects of discussion include data availability, modeling tools, indices development, and metrics and their application across multiple spatiotemporal scales.

5 Chimonyo, V. G. P.; Chibarabada, T. P.; Choruma, D. J.; Kunz, R.; Walker, S.; Massawe, F.; Modi, A. T.; Mabhaudhi, Tafadzwanashe. 2022. Modelling neglected and underutilised crops: a systematic review of progress, challenges, and opportunities. Sustainability, 14(21):13931. (Special issue: Interdisciplinary Approaches to Mainstreaming Underutilized Crops) [doi: https://doi.org/10.3390/su142113931]
Crop modelling ; Underutilized species ; Climate resilience ; Ecophysiology ; Sustainability
(Location: IWMI HQ Call no: e-copy only Record No: H051496)
https://www.mdpi.com/2071-1050/14/21/13931/pdf?version=1666790014
https://vlibrary.iwmi.org/pdf/H051496.pdf
(0.91 MB) (930 KB)
Developing and promoting neglected and underutilised crops (NUS) is essential to building resilience and strengthening food systems. However, a lack of robust, reliable, and scalable evidence impedes the mainstreaming of NUS into policies and strategies to improve food and nutrition security. Well-calibrated and validated crop models can be useful in closing the gap by generating evidence at several spatiotemporal scales needed to inform policy and practice. We, therefore, assessed progress, opportunities, and challenges for modelling NUS using a systematic review. While several models have been calibrated for a range of NUS, few models have been applied to evaluate the growth, yield, and resource use efficiencies of NUS. The low progress in modelling NUS is due, in part, to the vast diversity found within NUS that available models cannot adequately capture. A general lack of research compounds this focus on modelling NUS, which is made even more difficult by a deficiency of robust and accurate ecophysiological data needed to parameterise crop models. Furthermore, opportunities exist for advancing crop model databases and knowledge by tapping into big data and machine learning.

6 Chimonyo, V. G. P.; Govender, L.; Nyathi, M.; Scheelbeek, P. F. D.; Choruma, D. J.; Mustafa, M.; Massawe, F.; Slotow, R.; Modi, A. T.; Mabhaudhi, Tafadzwanashe. 2023. Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: a systematic review and meta-analysis. Frontiers in Nutrition, 10:1060246. [doi: https://doi.org/10.3389/fnut.2023.1060246]
Intercropping ; Cereal crops ; Legumes ; Multiple cropping ; Water use efficiency ; Water productivity ; Nutrition ; Sustainable Development Goals ; Goal 2 Zero hunger ; Goal 3 Good health and well-being ; Goal 12 Responsible production and consumption
(Location: IWMI HQ Call no: e-copy only Record No: H051672)
https://www.frontiersin.org/articles/10.3389/fnut.2023.1060246/pdf
https://vlibrary.iwmi.org/pdf/H051672.pdf
(1.35 MB) (1.35 MB)
Introduction: Intercropping cereals with legumes can intensify rainfed cereal monocropping for improved household food and nutritional security. However, there is scant literature confirming the associated nutritional benefits.
Methodology: A systematic review and meta-analysis of nutritional water productivity (NWP) and nutrient contribution (NC) of selected cereal-legume intercrop systems was conducted through literature searches in Scopus, Web of Science and ScienceDirect databases. After the assessment, only nine articles written in English that were field experiments comprising grain cereal and legume intercrop systems were retained. Using the R statistical software (version 3.6.0), paired t-tests were used to determine if differences existed between the intercrop system and the corresponding cereal monocrop for yield (Y), water productivity (WP), NC, and NWP.
Results: The intercropped cereal or legume yield was 10 to 35% lower than that for the corresponding monocrop system. In most instances, intercropping cereals with legumes improved NY, NWP, and NC due to their added nutrients. Substantial improvements were observed for calcium (Ca), where NY, NWP, and NC improved by 658, 82, and 256%, respectively.
Discussion: Results showed that cereal-legume intercrop systems could improve nutrient yield in water-limited environments. Promoting cereal legume intercrops that feature nutrient-dense legume component crops could contribute toward addressing the SDGs of Zero Hunger (SDG 3), Good Health and Well-3 (SDG 2) and Responsible consumption and production (SDG 12).

7 Mateva, K. I.; Tan, X. L.; Halimi, R. A.; Chai, H. H.; Makonya, G. M.; Gao, X.; Shayanowako, A. I. T.; Ho, W. K.; Tanzi, A. S.; Farrant, J.; Mabhaudhi, T.; King, G. J.; Mayes, S.; Massawe, F.. 2023. Bambara groundnut (Vigna subterranea (L.) Verdc.). In Farooq, M.; Siddique, K. H. M. (Eds.). Neglected and underutilized crops: future smart food. London, UK: Academic Press. pp.557-615. [doi: https://doi.org/10.1016/B978-0-323-90537-4.00021-1]
Bambara groundnut ; Vigna subterranea ; Underutilized species ; Food systems ; Nutritive value ; Value chain analysis ; Economic viability ; Policies ; Food security ; Genomics ; Plant growth ; Climate change ; Climate resilience ; Abiotic stress ; Drought resistance ; Biotic stress ; Pest resistance ; Photoperiodicity ; Farmers ; Consumers / Africa
(Location: IWMI HQ Call no: e-copy only Record No: H051766)
https://vlibrary.iwmi.org/pdf/H051766.pdf
(0.79 MB)
Bambara groundnut (Vigna subterranea (L.) Verdc.) represents an untapped potential for developing robust food systems. This promising but underutilized African grain legume has high nutritional qualities comparable to popular and widely consumed legumes, as well as exceptional resistance to biotic and abiotic stresses. In addition, the crop can grow on a range of soils, fix atmospheric nitrogen, and enhance soil fertility, making its production truly climate-resilient. Third to peanut (Arachis hypogaea L) and cowpeas (Vigna unguiculata L. Walp.) in terms of production and consumption in sub-Saharan Africa, Bambara groundnut is set to increase in importance as current food production systems become more diverse, and this is also evident in the steady increase in yield and area harvested across the west, east, and southern Africa over the past 25 years. Despite these relevant characteristics, the potential of Bambara groundnut in improving food systems is hindered by a lack of agricultural policy around the value chain, consistent phenological development, i.e., sensitivity to long photoperiods, and a phenomenon referred to as hard-to-cook (HTC) during poststorage processing. Over the years, research efforts have led to a more optimistic outlook for Bambara groundnut’s ability to overcome these challenges. However, a concerted policy push by African governments, with technical and financial support from regional organizations, is still required to boost research uptake to realize the crop's full potential. This chapter provides comprehensive evidence of Bambara groundnut as a “future smart food.” It details the challenges that need to be addressed and production systems thinking solutions to harness the full potential of this less-mainstream crop.

8 Neik, T. X.; Siddique, K. H. M.; Mayes, S.; Edwards, D.; Batley, J.; Mabhaudhi, Tafadzwanashe; Song, B. K.; Massawe, F.. 2023. Diversifying agrifood systems to ensure global food security following the Russia–Ukraine crisis. Frontiers in Sustainable Food Systems, 7:1124640. [doi: https://doi.org/10.3389/fsufs.2023.1124640]
Food security ; Agrifood systems ; Diversification ; Sustainable intensification ; Food crops ; Food production ; Food supply chains ; Resilience ; Food prices ; Markets ; Exports ; Technology ; Conflicts / Russia / Ukraine
(Location: IWMI HQ Call no: e-copy only Record No: H051821)
https://www.frontiersin.org/articles/10.3389/fsufs.2023.1124640/pdf
https://vlibrary.iwmi.org/pdf/H051821.pdf
(1.69 MB) (1.69 MB)
The recent Russia–Ukraine conflict has raised significant concerns about global food security, leaving many countries with restricted access to imported staple food crops, particularly wheat and sunflower oil, sending food prices soaring with other adverse consequences in the food supply chain. This detrimental effect is particularly prominent for low-income countries relying on grain imports, with record-high food prices and inflation affecting their livelihoods. This review discusses the role of Russia and Ukraine in the global food system and the impact of the Russia–Ukraine conflict on food security. It also highlights how diversifying four areas of agrifood systems—markets, production, crops, and technology can contribute to achieving food supply chain resilience for future food security and sustainability.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO