Your search found 3 records
1 Myer, G. L.; Miller, W. W.; Zheng, Y.. 1993. Water management for profit maximization. Journal of Production Agriculture, 6(4):542-545.
Water allocation ; Water management ; Soil moisture ; Irrigation scheduling ; Models ; Crop yield
(Location: IWMI-HQ Call no: P 3547 Record No: H014785)

2 Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R. D. G.; Jain, R. C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; Stefan, C.; Pettenati, M.; van der Gun, J.; Sprenger, C.; Massmann, G.; Scanlon, B. R.; Xanke, J; Jokela, P.; Zheng, Y.; Rossetto, R.; Shamrukh, M.; Pavelic, Paul; Murray, E.; Ross, A.; Bonilla Valverde, J. P.; Palma Nava, A.; Ansems, N.; Posavec, K.; Ha, K.; Martin, R.; Sapiano, M. 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1):1-30. [doi: https://doi.org/10.1007/s10040-018-1841-z]
Groundwater management ; Groundwater recharge ; Groundwater extraction ; Groundwater pollution ; Water use ; Water quality ; Water resources ; Water levels ; Water storage ; Water supply ; Aquifers ; Artificial recharge ; Filtration ; Drinking water
(Location: IWMI HQ Call no: e-copy only Record No: H048926)
https://link.springer.com/content/pdf/10.1007%2Fs10040-018-1841-z.pdf
https://vlibrary.iwmi.org/pdf/H048926.pdf
(4.47 MB)
The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance of MAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km3/year, ~2.4% of groundwater extraction in countries reporting MAR (or ~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality of water supplies.

3 Wang, L.; Gu, X.; Slater, L. J.; Lai, Y.; Zheng, Y.; Gong, J.; Dembele, Moctar; Tosunoglu, F.; Liu, J.; Zhang, X.; Kong, D.; Li, J. 2023. Attribution of the record-breaking extreme precipitation events in July 2021 over central and eastern China to anthropogenic climate change. Earth's Future, 11(9):e2023EF003613. [doi: https://doi.org/10.1029/2023EF003613]
Precipitation ; Anthropogenic climate change ; Extreme weather events ; Climate prediction ; Forecasting ; Climatology ; Climate models ; Time series analysis ; Greenhouse gas emissions / China
(Location: IWMI HQ Call no: e-copy only Record No: H052231)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF003613
https://vlibrary.iwmi.org/pdf/H052231.pdf
(13.70 MB) (13.7 MB)
In July 2021, Typhoon In-Fa produced record-breaking extreme precipitation events (hereafter referred to as the 2021 EPEs) in central and eastern China, and caused serious socioeconomic losses and casualties. However, it is still unknown whether the 2021 EPEs can be attributed to anthropogenic climate change (ACC) and how the occurrence probabilities of precipitation events of a similar magnitude might evolve in the future. The 2021 EPEs in central (eastern) China occurred in the context of no linear trend (a significantly increasing trend at a rate of 4.44%/decade) in the region-averaged Rx5day (summer maximum 5-day accumulated precipitation) percentage precipitation anomaly (PPA), indicating that global warming might have no impact on the 2021 EPE in central China but might have impacted the 2021 EPE in eastern China by increasing the long-term trend of EPEs. Using the scaled generalized extreme value distribution, we detected a slightly negative (significantly positive) association of the Rx5day PPA time series in central (eastern) China with the global mean temperature anomaly, suggesting that global warming might have no (a detectable) contribution to the changes in occurrence probability of precipitation extremes like the 2021 EPEs in central (eastern) China. Historical attributions (1961–2020) showed that the likelihood of the 2021 EPE in central/eastern China decreased/increased by approximately +47% (-23% to +89%)/+55% (-45% to +201%) due to ACC. By the end of the 21st century, the likelihood of precipitation extremes similar to the 2021 EPE in central/eastern China under SSP585 is 14 (9–19)/15 (9–20) times higher than under historical climate conditions.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO