Your search found 7 records
1 Scanlon, B. R.. 2000. Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36(2):395-409.
Water resources ; Arid lands ; Water potential ; Environmental effects ; Drainage ; Wastewater ; Mathematical models / USA / Texas / Chihuahuan Desert / Eagle Flat Basin
(Location: IWMI-HQ Call no: P 5562 Record No: H027352)

2 Scanlon, B. R.; Healy, R. W.; Cook, P. G. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10:18-39.
Groundwater ; Recharge ; Estimation ; Aquifers ; Water budget ; Mathematical models ; Surface water ; Seepage
(Location: IWMI-HQ Call no: P 7157 Record No: H036338)
https://vlibrary.iwmi.org/pdf/H_36338.pdf

3 Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R. D. G.; Jain, R. C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; Stefan, C.; Pettenati, M.; van der Gun, J.; Sprenger, C.; Massmann, G.; Scanlon, B. R.; Xanke, J; Jokela, P.; Zheng, Y.; Rossetto, R.; Shamrukh, M.; Pavelic, Paul; Murray, E.; Ross, A.; Bonilla Valverde, J. P.; Palma Nava, A.; Ansems, N.; Posavec, K.; Ha, K.; Martin, R.; Sapiano, M. 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27(1):1-30. [doi: https://doi.org/10.1007/s10040-018-1841-z]
Groundwater management ; Groundwater recharge ; Groundwater extraction ; Groundwater pollution ; Water use ; Water quality ; Water resources ; Water levels ; Water storage ; Water supply ; Aquifers ; Artificial recharge ; Filtration ; Drinking water
(Location: IWMI HQ Call no: e-copy only Record No: H048926)
https://link.springer.com/content/pdf/10.1007%2Fs10040-018-1841-z.pdf
https://vlibrary.iwmi.org/pdf/H048926.pdf
(4.47 MB)
The last 60 years has seen unprecedented groundwater extraction and overdraft as well as development of new technologies for water treatment that together drive the advance in intentional groundwater replenishment known as managed aquifer recharge (MAR). This paper is the first known attempt to quantify the volume of MAR at global scale, and to illustrate the advancement of all the major types of MAR and relate these to research and regulatory advancements. Faced with changing climate and rising intensity of climate extremes, MAR is an increasingly important water management strategy, alongside demand management, to maintain, enhance and secure stressed groundwater systems and to protect and improve water quality. During this time, scientific research—on hydraulic design of facilities, tracer studies, managing clogging, recovery efficiency and water quality changes in aquifers—has underpinned practical improvements in MAR and has had broader benefits in hydrogeology. Recharge wells have greatly accelerated recharge, particularly in urban areas and for mine water management. In recent years, research into governance, operating practices, reliability, economics, risk assessment and public acceptance of MAR has been undertaken. Since the 1960s, implementation of MAR has accelerated at a rate of 5%/year, but is not keeping pace with increasing groundwater extraction. Currently, MAR has reached an estimated 10 km3/year, ~2.4% of groundwater extraction in countries reporting MAR (or ~1.0% of global groundwater extraction). MAR is likely to exceed 10% of global extraction, based on experience where MAR is more advanced, to sustain quantity, reliability and quality of water supplies.

4 Cuthbert, M. O.; Taylor, R. G.; Favreau, G.; Todd, M. C.; Shamsudduha, M.; Villholth, Karen G.; MacDonald, A. M.; Scanlon, B. R.; Kotchoni, D. O. V.; Vouillamoz, J.-M.; Lawson, F. M. A.; Adjomayi, P. A.; Kashaigili, J.; Seddon, D.; Sorensen, J. P. R.; Ebrahim, Girma Yimer; Owor, M.; Nyenje, P. M.; Nazoumou, Y.; Goni, I.; Ousmane, B. I.; Sibanda, T.; Ascott, M. J.; Macdonald, D. M. J.; Agyekum, W.; Koussoube, Y.; Wanke, H.; Kim, H.; Wada, Y.; Lo, M.-H.; Oki, T.; Kukuric, N. 2019. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572(7768):230-234. [doi: https://doi.org/10.1038/s41586-019-1441-7]
Groundwater recharge ; Climate change ; Resilience ; Groundwater table ; Observation ; Precipitation ; Hydrology ; Hydrography ; Models ; Arid zones ; Rain / Africa South of Sahara / Benin / Uganda / United Republic of Tanzania / Zimbabwe / South Africa / Namibia / Niger / Ghana / Burkina Faso
(Location: IWMI HQ Call no: e-copy only Record No: H049316)
https://www.nature.com/articles/s41586-019-1441-7.epdf?author_access_token=UgizrPwmrGzlbL33bjbvQdRgN0jAjWel9jnR3ZoTv0M3C122Ih9FQbr0PbeOlDAX9EZlbSwXsaUcJ-Vq-8EelgPfWJQTdVE-2_3g7yypNR4C-qTOMe7Ux1weufjBdaT9SyaKgJjfKYgJ2fqsjIRLng%3D%3D
https://vlibrary.iwmi.org/pdf/H049316.pdf
(7.21 MB)
Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2 , maintains vital ecosystems, and strongly influences terrestrial water and energy budgets3 . Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4,5 . Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources4 in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies.

5 Mukherjee, A.; Scanlon, B. R.; Aureli, A.; Langan, Simon; Guo, H.; McKenzie, A. A. (Eds.) 2021. Global groundwater: source, scarcity, sustainability, security, and solutions. Amsterdam, Netherlands: Elsevier. 676p.
Groundwater management ; Water resources ; Water scarcity ; Sustainability ; Water security ; Water availability ; Water supply ; Water governance ; Groundwater irrigation ; Groundwater pollution ; Water quality ; Contamination ; Chemical substances ; Pollutants ; Arsenic ; Groundwater recharge ; Aquifers ; Agricultural production ; Water storage ; International waters ; Water use efficiency ; Domestic water ; Surface water ; Brackish water ; Freshwater ; Desalination ; Environmental control ; Monitoring ; Climate change ; Drought ; Livelihoods ; Sustainable Development Goals ; Urbanization ; Arid zones ; Cold zones ; Hydrogeology ; Deltas ; River basins ; Technology ; Machine learning ; Modelling / Middle East / East Africa / South Asia / South Africa / Australia / USA / Brazil / China / Canada / Jamaica / Morocco / Israel / India / Pakistan / Bangladesh / Afghanistan / Lao People's Democratic Republic / Indonesia / Himalayan Region / North China Plain / Alberta / Texas / Florida / Cape Town / Medan / Barind Tract / Nile River Basin / Kingston Basin / Ganges-Brahmaputra-Meghna River Delta / Pearl River Delta
(Location: IWMI HQ Call no: IWMI Record No: H050267)
https://vlibrary.iwmi.org/pdf/H050267_TOC.pdf
(0.18 MB)

6 Mukherjee, A.; Scanlon, B. R.; Aureli, A.; Langan, Simon; Guo, H.; McKenzie, A. 2021. Global groundwater: from scarcity to security through sustainability and solutions. In Mukherjee, A.; Scanlon, B. R.; Aureli, A.; Langan, Simon; Guo, H.; McKenzie, A. A. (Eds.). Global groundwater: source, scarcity, sustainability, security, and solutions. Amsterdam, Netherlands: Elsevier. pp.3-20. [doi: https://doi.org/10.1016/B978-0-12-818172-0.00001-3]
Groundwater ; Water scarcity ; Water security ; Sustainability ; Water quality ; Contamination ; Water availability ; Food security ; Energy ; Nexus ; Irrigation ; Urbanization ; Economic aspects ; Trade
(Location: IWMI HQ Call no: IWMI Record No: H050268)
Groundwater, the largest available global freshwater resource, plays a crucial role in human sustenance and global food security through drinking water supplies and irrigated agriculture. In recent times, many parts of the world have been experiencing discernable, large-scale groundwater depletion, and pollution. A large groundwater-dependent population, uncertain climate-reliant recharge processes, transboundary water sources, major geogenic-sourced, nonpoint contaminants, inefficient irrigation methods and human practices, and indiscriminate land use change with rising urbanization underscore the urgent need to develop models of sustainability and security for global groundwater, in terms of both quantity and quality. Climate change is expected to exacerbate these issues. We need to understand the main factors that control groundwater availability (quantity and quality) in a changing world, where climate change and human factors (overexploitation, pollution, economics, agro-food aspects and their socioeconomic side, and governance intervention) deeply influence water availability. Because groundwater represents a critical source of water in many areas, especially in developing countries, there is a need to analyze physical (hydrological), chemical (hydrogeochemistry), and human (socioeconomic) aspects within a comprehensive framework to define sustainability. Groundwater, which forms a large component of attaining the sustainable development goals, is difficult to manage (mostly not visible, limited monitoring of groundwater levels, recharge, and abstraction, poorly defined flow boundaries; transboundary issues; poor management of abstraction; uncertainty in groundwater–surface water inter-connections) and hence requires comprehensive scale–dependent governance plans. From an economic and governance point of view, there has been insufficient attention given to groundwater as a resource, which is both hidden but widely considered ubiquitous. Solutions, incorporating emerging and innovative technologies, need to be integrated with traditional knowledge, to develop future groundwater security.

7 Yao, Y.; Zheng, C.; Andrews, C. B.; Scanlon, B. R.; Kuang, X.; Zeng, Z.; Jeong, S.-J.; Lancia, M.; Wu, Y.; Li, G. 2021. Role of groundwater in sustaining northern Himalayan rivers. Geophysical Research Letters, 48(10):e2020GL092354. [doi: https://doi.org/10.1029/2020GL092354]
Groundwater flow ; Rivers ; Sustainability ; Stream flow ; Groundwater recharge ; Discharges ; Hydrology ; Precipitation ; Highlands ; Models / China / Himalayan Rivers / Yarlung Zangbo Basin
(Location: IWMI HQ Call no: e-copy only Record No: H050400)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020GL092354
https://vlibrary.iwmi.org/pdf/H050400.pdf
(4.10 MB) (4.10 MB)
The Himalayas are critical for supplying water for ~2 billion people who live downstream, and available water is highly sensitive to climate change. The role of the groundwater system in sustaining the northern Himalayan rivers remains unknown, and this compromises Asia's future water sustainability. Here, we quantify the spatiotemporal contribution of groundwater to river flows in the Yarlung Zangbo Basin (upper reaches of Brahmaputra). Our results show that the groundwater recharge represents ~23% of mean annual precipitation, translating into ~30 km3/yr of baseflow, which contributes ~55% of the total river discharge in the upstream reaches to ~27% in the downstream reaches. The percentage of groundwater contribution is inversely related to topographic steepness and total precipitation, with the steepest topography and highest precipitation in the eastern Himalayas. This study fills a knowledge gap on groundwater in the Himalayas and is a foundation for projecting water changes under climatic warming.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO