Your search found 4 records
1 Venot, Jean-Philippe; Jella, Kiran; Bharati, Luna; George, B.; Biggs, T.; Gangadhara Rao, Parthasaradhi; Gumma, M. K.; Acharya, Sreedhar. 2010. Farmers' adaptation and regional land use changes in irrigation systems under fluctuating water supply, South India. Journal of Irrigation and Drainage Engineering, 136(9):595-609. [doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000225]
Irrigation systems ; Irrigation programs ; Water shortage ; Water scarcity ; Water availability ; River basins ; Crop management ; Productivity / India / Nagarjuna Sagar Project
(Location: IWMI HQ Call no: PER Record No: H043081)
https://vlibrary.iwmi.org/pdf/H043081.pdf
(2.46 MB)
In closing river basins where nearly all available water is committed to existing uses, downstream irrigation projects are expected to experience water shortages more frequently. Understanding the scope for resilience and adaptation of large surface irrigation systems is vital to the development of management strategies designed to mitigate the impact of river basin closure on food production and the livelihoods of farmers. A multi-level analysis (farm level surveys and regional assessment through remote sensing techniques and statistics) of the dynamics of irrigation and land use in the Nagarjuna Sagar project (South India) in times of changing water availability (2000–2006) highlights that during low flow years, there is large-scale adoption of rainfed —or supplementary irrigated- crops that have lower land productivity but higher water productivity, and that a large fraction of land is fallowed. Cropping pattern changes during the drought reveal short term coping strategies rather than long-term evolutions: after the shock, farmers reverted to their usual cropping patterns during years with adequate canal supplies. For the sequence of water supply fluctuations observed from 2000–2006, the Nagarjuna Sagar irrigation system shows a high level of sensitivity to short-term perturbations, but long-term resilience if flows recover. Management strategies accounting for local level adaptability will be necessary to mitigate the impacts of low flow years but there is scope for improvement of the performance of the system.

2 Garg, K. K.; Bharati, Luna; Gaur, A.; George, B.; Acharya, Sreedhar; Jella, Kiran; Narasimhan, B. 2012. Spatial mapping of agricultural water productivity using the SWAT model in upper Bhima catchment, India. Irrigation and Drainage, 61(1):60-79. [doi: https://doi.org/10.1002/ird.618]
Water productivity ; Irrigated farming ; Irrigation programs ; Crop production ; Mapping ; Simulation models ; Hydrology ; Models ; Water balance ; River basins ; Economic aspects / India / Upper Bhima River Basin / Ujjani Irrigation Scheme
(Location: IWMI HQ Call no: PER Record No: H043722)
https://vlibrary.iwmi.org/pdf/H043722.pdf
(1.99 MB)
The Upper Bhima River Basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Upper Bhima River Basin and assess crop water productivity using the distributed hydrologic model, SWAT. Rainfall within the basin varies from 450 to 5000 mm in a period of 3–4 months. The basin has an average rainfall of 711 mm (32 400 Mm 3 (million cubic metres)) in a normal year, of which 12.8% (4150 Mm 3 ) and 21% (6800 Mm 3) are captured by the reservoirs and groundwater reserves, respectively, 7% (2260 Mm 3 (exported as runoff out of the basin and the rest (63%) used in evapotranspiration. Agricultural water productivity for sugarcane, sorghum and millet were estimated as 2.90, 0.51 and 0.30 kg m¯3, respectively, which were signi cantly lower than the potential and global maximum in the basin and warrant further improvement. Various scenarios involving different cropping patterns were tested with the goal of increasing economic water productivity values in the Ujjani Irrigation Scheme. Analysis suggests that maximization of the area by provision of supplemental irrigation to rainfed areas as well as better on-farm water management practices can provide opportunities for improving water productivity.

3 Pavelic, Paul; Patankar, U.; Acharya, Sreedhar; Jella, Kiran; Gumma, M. K. 2012. Role of groundwater in buffering irrigation production against climate variability at the basin scale in South-West India. Agricultural Water Management, 103(1):78-87. [doi: https://doi.org/10.1016/j.agwat.2011.10.01]
Groundwater irrigation ; Wells ; Resource depletion ; Aquifers ; Climate change ; River basins ; Rain ; Hydrology ; Water scarcity ; Water stress ; Water scarcity / India / Upper Bhima River Basin
(Location: IWMI HQ Call no: PER Record No: H044570)
https://vlibrary.iwmi.org/pdf/H044570.pdf
(2.01 MB)
The basaltic aquifers of the Upper Bhima River Basin in India are highly utilized for irrigation but the sustainability of groundwater withdrawals and the agricultural production systems they support is largely unknown. Here we used hydrogeological data, supported by secondary data, to assess the effects of water scarcity over a decade-long period (1998–2007) on the groundwater resources at the regional basin scale. This reveals no evidence of systematic declines in total groundwater availability over the period; only shorter-term losses/gains in storage associated with successive dry/wet years. The clearest indicator of stress comes from the more widespread drying out of wells following lower rainfall years throughout the basin and especially in upland areas where aquifers are least developed and most easily drained. Groundwater in the basin offers an adaptive mechanism to climate variability to some degree, but the buffering capacity is constrained by low aquifer storativity and average residence times of just a few years. Around 40% of the basin is currently at a level of development that is of concern, and the number of irrigation wells is growing rapidly. However recent evidence of conversion from high to low water use crops indicates the adaptive capacity of farmers to water-related stresses. Surplus surface water ows may provide opportunities to enhance groundwater recharge but requires careful trade-off analysis of the downstream impacts.

4 Amerasinghe, Priyanie; Bhardwaj, R. M.; Scott, C.; Jella, Kiran; Marshall, F. 2013. Urban wastewater and agricultural reuse challenges in India. Colombo, Sri Lanka: International Water Management Institute (IWMI). 28p. (IWMI Research Report 147) [doi: https://doi.org/10.5337/2013.200]
Water management ; Wastewater irrigation ; Wastewater treatment ; Urban areas ; Sewage ; Irrigated sites ; Water quality ; Water use ; Water supply ; Irrigated farming ; Crop production ; Drinking water ; Health hazards ; Sanitation ; Households ; Living standards ; Income ; Case studies ; GIS / India
(Location: IWMI HQ Call no: IWMI Record No: H045769)
http://www.iwmi.cgiar.org/Publications/IWMI_Research_Reports/PDF/PUB147/RR147.pdf
(2.56 MB)
More than 1 million hectares of urban land in India could be irrigated for crops if wastewater was made safe for use. Lack of systematic data collection by municipalities makes it difficult to accurately assess the wastewater generation or estimate the total amount of urban area under wastewater irrigation, so the potential of urban and peri-urban farming could be even greater. This study attempted to analyze the current status of wastewater generation, its uses and livelihood benefits especially in agriculture, based on national data and case studies from Ahmedabad, New Delhi, Hyderabad, Kanpur and Kolkata.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO