Your search found 10 records
1 Awulachew, Seleshi Bekele; Tenaw, M.; Steenhuis, T.; Easton, Z.; Ahmed, A.; Bashar, K. E.; Hailesellassie, A. 2008. Impact of watershed interventions on runoff and sedimentation in Gumera Watershed. In Humphreys, E.; Bayot, R. S.; van Brakel, M.; Gichuki, F.; Svendsen, M.; Wester, P.; Huber-Lee, A.; Cook, S. Douthwaite, B.; Hoanh, Chu Thai; Johnson, N.; Nguyen-Khoa, Sophie; Vidal, A.; MacIntyre, I.; MacIntyre, R. (Eds.). Fighting poverty through sustainable water use: proceedings of the CGIAR Challenge Program on Water and Food, 2nd International Forum on Water and Food, Addis Ababa, Ethiopia, 10-14 November 2008. Vol.1. Keynotes; Cross-cutting topics. Colombo, Sri Lanka: CGIAR Challenge Program on Water and Food. pp.109-113.
River basins ; Flow ; Simulation models ; Watershed management ; Runoff ; Sedimentation ; Erosion ; Soil loss ; Soil degradation / Ethiopia / Sudan / Gumera Watershed / Abbay-Blue Nile River Basin
(Location: IWMI HQ Call no: IWMI 333.91 G000 HUM Record No: H041752)
http://cgspace.cgiar.org/bitstream/handle/10568/3706/IFWF2_proceedings_Volume%20I.pdf?sequence=1
https://vlibrary.iwmi.org/pdf/H041752.pdf
(7.964MB)

2 Haileslassie, A.; Peden, D.; Gebreselassie, S.; Amede, Tilahun; Wagnew, A.; Taddesse, G. 2009. Livestock water productivity in the Blue Nile Basin: assessment of farm scale heterogeneity. Rangeland Journal, 31(2):213-222. [doi: https://doi.org/10.1071/RJ09006]
Livestock ; Feeds ; Water productivity ; Farming systems ; Crop management ; Evapotranspiration ; River basins ; Land use ; Poverty ; Water depletion ; Households ; Surveys / Ethiopia / Egypt / Sudan / Blue Nile Basin / Gumera Watershed
(Location: IWMI HQ Call no: IWMI 636 100 AME Record No: H042281)
https://vlibrary.iwmi.org/pdf/H042281.pdf
(0.37 MB)
A recent study of the livestock water productivity (LWP), at higher spatial scales in the Blue Nile Basin, indicated strong variability across regions. To get an insight into the causes of this variability, we examined the effect of farm households’ access to productive resources (e.g. land, livestock) on LWPin potato–barley, barley–wheat, teff–millet and rice farming systems of the Gumera watershed (in the Blue Nile Basin, Ethiopia). We randomly selected 180 farm households. The sizes of the samples, in each system, were proportional to the respective system’s area. Then we grouped the samples, using a participatory wealth ranking method, into three wealth groups (rich, medium and poor) and used structured and pretested questionnaires to collect data on crops and livestock management and applied reference evapotranspiration (ET0) and crop coefficient (Kc) approaches to estimate depleted (evapotranspiration) water in producing animal feed and food crops. Then, we estimated LWPas a ratio of livestock’s beneficial outputs to water depleted. Our results suggest strong variability of LWP across the different systems: ranging between 0.3 and 0.6 US$ m3 year1. The tendency across different farming systems was comparable with results from previous studies at higher spatial scales. The range among different wealth groups was wider (0.1 to 0.6 US$ m3 year1) than among the farming systems. This implies that aggregating water productivity (to a system scale) masks hotspots and bright spots. Our result also revealed a positive trend between water productivity (LWPand crop water productivity, CWP) and farm households’ access to resources. Thus, we discuss our findings in relation to poverty alleviation and integrated land and water management to combat unsustainable water management practices in the Blue Nile Basin.

3 Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra. (Comps.) 2009. Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Summary report, abstracts of papers with proceedings on CD-ROM. Colombo, Sri Lanka: International Water Management Institute (IWMI). 48p. [doi: https://doi.org/10.3910/2009.201]
River basin management ; Water governance ; Environmental flows ; Simulation models ; Reservoirs ; Sedimentation ; Rainfall-Runoff relationships ; Hydrology ; Water balance ; Erosion ; Soil conservation ; Watersheds ; Irrigation schemes ; Water use / Ethiopia / Sudan / Blue Nile / Lake Tana Subbasin / Gumera Watershed / Roseires Reservoir / Rahad Scheme / Abbay River Basin
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042497)
http://www.iwmi.cgiar.org/Publications/Other/PDF/CP19_booklet-Final_for_web2.pdf

4 Yilma, Aster Denekew; Awulachew, Seleshi Bekele. 2009. Characterization and atlas of the Blue Nile Basin and its sub basins. In Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra (Comps.). Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Summary report, abstracts of papers with proceedings on CD-ROM. Colombo, Sri Lanka: International Water Management Institute (IWMI). 236p.
Maps ; River basins ; Watersheds ; Topography ; Climate ; Evapotranspiration ; Rain ; Evaporation ; Hydrology ; Land cover ; Meteorology ; Population / Africa / Ethiopia / Sudan / Blue Nile River Basin / Abbay Basin / Tana Sub Basin / Jemma Sub Basin / Muger Sub Basin / Guder Sub Basin / Beles Sub Basin / Dabus Sub Basin / Didessa Sub Basin / Fincha Sub Basin / Anger Sub Basin / Wenbera Sub Basin / Beshelo Sub Basin / Welaka Sub Basin / North Gojam Sub Basin / South Gojam Sub Basin / Dinder Sub Basin / Rahad Sub Basin / Gilgel Abay Watershed / Gumera Watershed / Anjeni Micro Watershed / Andit Micro Watershed
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042502)
https://publications.iwmi.org/pdf/H042502.pdf
https://vlibrary.iwmi.org/pdf/H042502.pdf
(57.34 MB)

5 Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra. (Comps.) 2009. Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Colombo, Sri Lanka: International Water Management Institute (IWMI). 310p. [doi: https://doi.org/10.5337/2011.0014]
River basin management ; Watershed management ; Farming systems ; Water balance ; Reservoirs ; Water supply ; Irrigation requirements ; Irrigation programs ; Simulation models ; Sedimentation ; Rainfall-Runoff relationships ; Erosion ; Soil water ; Water balance ; Soil conservation ; Institutions ; Organizations ; Policy ; Water governance ; International waters / Africa / Ethiopia / Sudan / Nile River / Blue Nile River Basin / Abbay River Basin / Roseires Reservoir / Gumera Watershed / Lake Tana Sub Basin / Volta Basin / Koga Watershed / Gumera Watershed
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042503)
https://publications.iwmi.org/pdf/H042503.pdf
https://vlibrary.iwmi.org/pdf/H042503.pdf
(6.52 MB)
This proceeding provides the papers and discussion results of a two-day workshop that was organized at International Water Management Institute (IWMI) office in Addis Ababa during the period of February 6-8, 2009 in relation to CPWF Project 19 – Improved water and land management in the Ethiopian Highlands and its impact on downstream stakeholders dependent on the Blue Nile. Short title: Upstream Downstream (USDS) in the Nile. The project is being under implementation during the last one and half years in partnership with various institutions that include International Livestock Research Institute, Cornell University, Omdurman Islamic University-UNESCO Chair in Water Resources, Addis Ababa University, Bahir Dar University, Amhara Regional Agricultural Research Institute and Forum for Social Studies. The main aims of the workshop had been: Bring together key stakeholders relevant to the project; Present, debate and validate the intermediate results of the project; Disseminate key results to wider audiences through workshop participating stakeholders; Follow up on the progress of the project and plan remaining tasks of the project. The workshop focus themes were: General characterization of the Blue Nile Basin; Watershed modeling and analysis; Water demand and allocation modeling and simulation; Policy and institutions of the water management in the Blue Nile basin.

6 Tenaw, M.; Awulachew, Seleshi Bekele. 2009. Soil and Water Assessment Tool (SWAT)-based runoff and sediment yield modeling: a case of the Gumera Watershed in Lake Tana Sub Basin. In Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra (Comps.). Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.100-111.
Watersheds ; Assessment ; Erosion ; Runoff ; Sedimentation ; Models ; Case studies / Africa / Ethiopia / Gumera Watershed / Lake Tana Sub Basin
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042511)
https://publications.iwmi.org/pdf/H042511.pdf
https://vlibrary.iwmi.org/pdf/H042511.pdf
(0.99 MB)
Land degradation is a serious threat in the Gumera watershed which is reflected in the form of soil erosion. Erosion is a major watershed problem causing significant loss of soil fertility and productivity. Increased sediment loads that shorten the useful life of the reservoir, the lives of other water-related structures, and increase the cost of maintenance and sediment remediation are off-site impacts of erosion. To develop effective erosion control plans and to achieve reductions in sedimentation, it is important to quantify the sediment yield and identify areas that are vulnerable to erosion. In recent decades, several simulation models have been developed in order to estimate, quantify, enhance understanding of spatial and temporal variability of erosion, and identify areas which are high contributors of sediment at micro-watershed level and over large areas. We used SWAT (Soil and Water Assessment Tool) to predict sediment yield, runoff, identify spatial distribution of sediment, and to test the potential of watershed management interventions in reducing sediment load from ‘hot spot’ areas. The tool was calibrated and validated against measured flow and sediment data. Both, calibration and validation results, showed a good match between measured and simulated flow and suspended sediment. The model prediction results indicated that about 72% of the Gumera watershed is erosion potential area with an average annual sediment load ranging from 11 to /ha/yr 22 tons exceeding tolerable soil loss rates in the study area. The model was applied to evaluate the potential of filter strips with various widths to reduce sediment production from critical micro-watersheds. The investigation revealed that implementing vegetation filter strips can reduce sediment yield by 58 to 74%.

7 Alemayehu, B.; Hagos, Fitsum; Haileslassie, A.; Mapedza, Everisto; Awulachew, Seleshi Bekele; Peden, D.; Tafesse, T. 2009. Prospect of payments for environmental services in the Blue Nile Basin: examples from Koga and Gumera watersheds, Ethiopia. In Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra (Comps.). Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Colombo, Sri Lanka: International Water Management Institute (IWMI). pp.254-280.
River basin management ; Watershed management ; Land management ; Households ; Farmers attitudes ; Economic aspects / Africa / Ethiopia / Blue Nile River Basin / Koga Watershed / Gumera Watershed / Lake Tana
(Location: IWMI HQ Call no: IWMI 333.9162 G100 AWU Record No: H042521)
https://publications.iwmi.org/pdf/H042521.pdf
https://vlibrary.iwmi.org/pdf/H042521.pdf
(0.68 MB)
In transboundary river basins, like the Blue Nile, conflicts over the use of water resources are growing and recent advances in sustainable resource management recognizes the need for approaches that coordinate activities of people dependent on a common resource-base to realize sustainability and equity. Payments for Environmental Services (PES) are a component of a new and more direct conservation paradigm and an emerging concept to finance conservation programs by fostering dialogue between upstream and downstream land users. Those kinds of approach are particularly useful if applied in basins where irrigation schemes are emerging and the service life of reservoir and irrigation canals, in downstream areas are threatened by the sediments moved from upstream region. Here we report the results of our study on the determinants of Willingness to Pay (WTP) and Willingness to Compensate (WTC) for improved land and water management practices in the Blue Nile Basin (Gumera and Koga watersheds). A total of 325 sample households were selected using a multi-stage sampling technique, and a structured and pre-tested questionnaire was used to collect data from the sample households. We applied Contingent Valuation Method (CVM) to elicit WTP using monetary and material payment vehicles. Our results showed that more households are willing to pay in labor than in cash. The mean WTP for improved land and water management was estimated at US$1.06 and US$1.3 months-1 household-1 for upstream and downstream farmers, respectively. Besides, 83.56% of the sample farm households showed WTC the upstream farmers in cash. However, the aggregate WTP falls far short of the estimated investment cost needed for ecosystem restoration. Among others, the number of livestock, size of arable land, access to education and credit by the sample farm households were identified to positively influence sample farmers’ WTP for restoration of ecosystem services and downstream farmers’ WTC for improved ecosystem regulation services. Therefore, institutions and policy measures that enhance environmental education, reduce poverty and foster stakeholders’ cooperation must be promoted. Prospect of Payments for Environmental Services in the Blue Nile Basin: Examples from Koga and Gumera Watersheds.

8 Haileslassie, A.; Peden, D.; Gebreselassie, S.; Amede, Tilahun; Descheemaeker, Katrien. 2009. Livestock water productivity in mixed crop–livestock farming systems of the Blue Nile Basin: assessing variability and prospects for improvement. Agricultural Systems, 102(1-3):33-40. [doi: https://doi.org/10.1016/j.agsy.2009.06.006]
Livestock ; Water productivity ; Farming systems ; River basin management ; Cereals / Africa / Ethiopia / Blue Nile River Basin / Gumera Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H042535)
https://vlibrary.iwmi.org/pdf/H042535.pdf
(0.46 MB)
Water scarcity is a major factor limiting food production. Improving Livestock Water Productivity (LWP) is one of the approaches to address those problems. LWP is defined as the ratio of livestock’s beneficial outputs and services to water depleted in their production. Increasing LWP can help achieve more production per unit of water depleted. In this study we assess the spatial variability of LWP in three farming systems (rice-based, millet-based and barley-based) of the Gumera watershed in the highlands of the Blue Nile basin, Ethiopia. We collected data on land use, livestock management and climatic variables using focused group discussions, field observation and secondary data. We estimated the water depleted by evapotranspiration (ET) and beneficial animal products and services and then calculated LWP. Our results suggest that LWP is comparable with crop water productivity at watershed scales. Variability of LWP across farming systems of the Gumera watershed was apparent and this can be explained by farmers’ livelihood strategies and prevailing biophysical conditions. In view of the results there are opportunities to improve LWP: improved feed sourcing, enhancing livestock productivity and multiple livestock use strategies can help make animal production more water productive. Attempts to improve agricultural water productivity, at system scale, must recognize differences among systems and optimize resources use by system components.

9 Awulachew, Seleshi Bekele; Tenaw, M.; Steenhuis, T.; Easton, Z.; Ahmed, A.; Bashar, K. E. 2008. Blue Nile flow, sediment and impact of watershed interventions: case of Gumera Watershed. Paper presented at the Second International Forum on Water and Food, Addis Ababa, Ethiopia, 10-13 November 2008. 8p.
Watershed management ; Erosion ; Sedimentation ; Runoff ; Models ; Flow ; River basins / Ethiopia / Gumera Watershed / Abbay-Blue Nile Basin
(Location: IWMI HQ Call no: e-copy only Record No: H043010)
https://publications.iwmi.org/pdf/H043010.pdf
https://vlibrary.iwmi.org/pdf/H043010.pdf
(0.49 MB) (0.49 MB)
High population pressure, inappropriate agricultural policies, improper land-use planning, over-dependency on agriculture as source of livelihood and extreme dependence on natural resources are inducing deforestation, overgrazing, expansion of agriculture to marginal lands and steep slopes, declining agricultural productivity and resource-use conflicts in many parts of Blue Nile. Increased land degradation from poor agricultural practices and erosion results in increased siltation and the reduced water quality in the river basin. The rainfall, runoff and sediment are highly variable both in time and space. Poor water and land management upstream severely affect runoff characteristics and the quality of water reaching downstream. The result is a downward spiral of poverty and food insecurity for millions of people both within the upper catchment and downstream across international borders. Quantification of the erosion, sedimentation processes and evaluation of impacts of interventions are difficult tasks. This paper schematizes the Blue Nile Basin (BNB) at various spatial levels as micro watershed, watershed, sub-basin to basin. It considers a particular watershed to model runoff, sediment and impact of watershed intervention. The result shows that runoff can be reasonably simulated with calibration of R2=0.87 and validation of result of 0.82, and comparable sediment modelling results. The study also demonstrates, by undertaking spatial analysis using topographic, soil and land use parameters it is possible to identify the high sediment risk sub-watersheds. Impact of typical watershed intervention using various widths of vegetative filter and application on high erosion risk watersheds show reduction of sediment yield from 52% to 74%

10 White, E. D.; Easton, Z. M.; Fuka, D. R.; Collick, A. S.; Adgo, E.; McCartney, Matthew; Awulachew, Seleshi Bekele; Selassie, Y. G.; Steenhuis, T. S. 2011. Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes, 25(6):915-925. [doi: https://doi.org/ 10.1002/hyp.7876]
Simulation models ; Hydrology ; Water balance ; Water table ; Runoff ; Stream flow ; Watersheds ; River basins / Ethiopia / USA / Blue Nile River / Gumera Watershed / New York / Catskill Mountains / Town Brook Watershed
(Location: IWMI HQ Call no: e-copy only Record No: H043240)
https://vlibrary.iwmi.org/pdf/H043240.pdf
(0.61 MB)
Watershed scale hydrological and biogeochemical models rely on the correct spatial-temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT-WB) to the original CN-based SWAT SWAT-CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT-WB than SWAT-CN [Nash–Sutcliffe efficiencies (NSE) of 0Ð79 and 0Ð67, respectively]. In the temperate Catskills, SWAT-WB and SWAT-CN predictions were approximately equivalent (NSE >0Ð70). The spatial distribution of runoff-generating areas differed greatly between the two models, with SWAT-WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO