Your search found 5 records
1 Wood, E. F.; Roundy, J. K.; Troy, T. J.; van Beek, L. P. H.; Bierkens, M. F. P.; Blyth, E.; de Roo, A.; Doll, P.; Ek, M.; Famiglietti, J.; Gochis, D.; van de Giesen, N.; Houser, P.; Jaffe, P. R.; Kollet, S.; Lehner, B.; Lettenmaier, D. P.; Peters-Lidard, C.; Sivapalan, M.; Sheffield, J.; Wade, A.; Whitehead, P. 2011. Hyperresolution global land surface modeling: meeting a grand challenge for monitoring earth’s terrestrial water. Water Resources Research, 47:10.
Land cover ; Surface water ; Hydrology ; Social aspects ; Water quality ; Soil moisture ; Weather ; Climate
(Location: IWMI HQ Call no: e-copy only Record No: H045083)
https://vlibrary.iwmi.org/pdf/H045083.pdf
(1.23 MB)

2 Sheffield, J.; Wood, E. F. 2011. Drought: past problems and future scenarios. London, UK: Earthscan. 210p.
Drought ; Monitoring ; Hydrology ; Models ; Climate change ; Soil moisture ; Sediment ; Precipitation ; Evapotranspiration ; Snow cover ; Lakes ; Rivers ; Stream flow ; Water storage / North America / South America / Europe / Africa / Asia / Middle East / Mongolia / China / India
(Location: IWMI HQ Call no: 363.34929 G000 SHE Record No: H046319)
https://vlibrary.iwmi.org/pdf/H046319_toc.pdf
(0.46 MB)

3 van Vliet, M. T. H.; Sheffield, J.; Wiberg, D.; Wood, E. F. 2016. Impacts of recent drought and warm years on water resources and electricity supply worldwide. Environmental Research Letters, 11:1-10. [doi: https://doi.org/10.1088/1748-9326/11/12/124021]
Water resources ; Drought ; Electricity generation ; Electricity supplies ; Thermal energy ; Water power ; Drought ; Temperature ; Water temperature ; Stream flow
(Location: IWMI HQ Call no: e-copy only Record No: H048083)
http://iopscience.iop.org/article/10.1088/1748-9326/11/12/124021/pdf
https://vlibrary.iwmi.org/pdf/H048083.pdf
(4.00 MB) (4.00 MB)
Recent droughts and heatwaves showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for thermoelectric power and hydropower generation in different regions. Here we use a global hydrological-electricity modelling framework to quantify the impacts of recent drought and warm years on hydropower and thermoelectric power usable capacity worldwide. Our coupled modelling framework consists of a hydrological model, stream temperature model, hydropower and thermoelectric power models, and was applied with data of a large selection of hydropower and thermoelectric power plants worldwide. Our results show that hydropower utilisation rates were on average reduced by 5.2% and thermoelectric power by 3.8% during the drought years compared to the long-term average for 1981–2010. Statistically significant (p < 0.01) impacts on both hydropower and thermoelectric power usable capacity were found during major drought years, e.g. 2003 in Europe (-6.6% in hydropower and -4.7% in thermoelectric power) and 2007 in Eastern North America (-6.1% in hydropower and -9.0% in thermoelectric power). Our hydrological-electricity modelling framework has potential for studying the linkages between water and electricity supply under climate variability and change, contributing to the quantification of the 'water-energy nexus'.

4 Siavashani, N. S.; Jimenez-Martinez, J.; Vaquero, G.; Elorza, F. J.; Sheffield, J.; Candela, L.; Serrat-Capdevila, A. 2021. Assessment of CHADFDM satellite-based input dataset for the groundwater recharge estimation in arid and data scarce regions. Hydrological Processes, 35(6):e14250. [doi: https://doi.org/10.1002/hyp.14250]
Groundwater recharge ; Satellites ; Datasets ; Weather data ; Semiarid zones ; Precipitation ; Drought ; Rain ; Evapotranspiration ; Irrigated land ; Soil water balance ; Water resources ; Aquifers ; Air temperature ; Remote sensing ; Sensitivity analysis ; Uncertainty ; Models / Chad / Niger / Nigeria / Lake Chad Basin
(Location: IWMI HQ Call no: e-copy only Record No: H050431)
https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.14250
https://vlibrary.iwmi.org/pdf/H050431.pdf
(3.85 MB) (3.85 MB)
Aquifer natural recharge estimations are a prerequisite for understanding hydrologic systems and sustainable water resources management. As meteorological data series collection is difficult in arid and semiarid areas, satellite products have recently become an alternative for water resources studies. A daily groundwater recharge estimation in the NW part of the Lake Chad Basin, using a soil–plant-atmosphere model (VisualBALAN), from ground- and satellite-based meteorological input dataset for non-irrigated and irrigated land and for the 2005–2014 period is presented. Average annual values were 284 mm and 30°C for precipitation and temperature in ground-based gauge stations. For the satellite-model-based Lake Chad Basin Flood and Drought Monitor System platform (CHADFDM), average annual precipitation and temperature were 417 mm and 29°C, respectively. Uncertainties derived from satellite data measurement could account for the rainfall difference. The estimated mean annual aquifer recharge was always higher from satellite- than ground-based data, with differences up to 46% for dryland and 23% in irrigated areas. Recharge response to rainfall events was very variable and results were very sensitive to: wilting point, field capacity and curve number for runoff estimation. Obtained results provide plausible recharge values beyond the uncertainty related to data input and modelling approach. This work prevents on the important deviations in recharge estimation from weighted-ensemble satellite-based data, informing in decision making to both stakeholders and policy makers.

5 Gonzalez, J. M.; Matrosov, E. S.; Obuobie, E.; Mul, M.; Pettinotti, L.; Gebrechorkos, S. H.; Sheffield, J.; Bottacin-Busolin, A.; Dalton, J.; Smith, D. Mark; Harou, J. J. 2021. Quantifying cooperation benefits for new dams in transboundary water systems without formal operating rules. Frontiers in Environmental Science, 9:596612. [doi: https://doi.org/10.3389/fenvs.2021.596612]
Dams ; International waters ; Water systems ; International cooperation ; Infrastructure ; River basins ; Reservoir operation ; Water policies ; Hydropower ; Ecosystem services ; Environmental flows ; Irrigation ; Simulation models / Ghana / Volta River Basin / Pwalugu Multipurpose Dam
(Location: IWMI HQ Call no: e-copy only Record No: H050729)
https://www.frontiersin.org/articles/10.3389/fenvs.2021.596612/pdf
https://vlibrary.iwmi.org/pdf/H050729.pdf
(9.16 MB) (9.16 MB)
New dams impact downstream ecosystems and water infrastructure; without cooperative and adaptive management, negative impacts can manifest. In large complex transboundary river basins without well codified operating rules and extensive historical data, it can be difficult to assess the benefits of cooperating, in particular in relation to new dams. This constitutes a barrier to harmonious development of river basins and could contribute to water conflict. This study proposes a generalised framework to assess the benefits of cooperation on the management of new dams in water resource systems that do not have formal sharing arrangements. Benefits are estimated via multi-criteria comparison of historical reservoir operations (usually relatively uncooperative) vs. adopting new cooperative rules which would achieve the best results for riparian countries as evaluated by a water resources simulator and its performance metrics. The approach is applied to the Pwalugu Multipurpose Dam (PMD), which is being built in Ghana in the Volta river basin. The PMD could impact downstream ecosystems and infrastructure in Ghana and could itself be impacted by how the existing upstream Bagre Dam is managed in Burkina Faso. Results show that with cooperation Ghana and Burkina Faso could both increase energy production although some ecosystem services loss would need to be mitigated. The study confirms that cooperative rules achieve higher overall benefits compared to seeking benefits only for individual dams or countries.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO