Your search found 12 records
1 Xia, J.; Huang, Z. C. G. H.; Rong, X. 2001. An integrated hydro-ecological modeling approach applied to the Lake Bositeng Basin in China. Water International, 26(1):105-118.
Hydrology ; Ecology ; Networks ; River basins ; Water balance ; Analysis ; Simulation models ; Water resource management / China / Lake Bositeng Basin / Kaide River / Peacock River
(Location: IWMI-HQ Call no: PER Record No: H028515)

2 Xia, J.; Huang, G. H.; Chen, Z.; Rong, X. 2001. An integrated planning framework for managing flood-endangered regions in the Yangtze River Basin. Water International, 26(2):153-161.
River basins ; Natural disasters ; Flood control ; Planning ; Decision support tools ; Models ; Sustainability ; Rain ; GIS ; Remote sensing / China / Yangtze River
(Location: IWMI-HQ Call no: PER Record No: H029156)

3 Xia, J.. 2002. A system approach to real-time hydrologic forecast in watersheds. Water International, 27(1):87-97.
Rivers ; Flow ; Flood control ; Forecasting ; Models ; Hydrology ; Rainfall-runoff relationships ; Watersheds
(Location: IWMI-HQ Call no: PER Record No: H029977)

4 Wang, G.; Xia, J.; Wu, B. 2004. Two-dimensional composite mathematical alluvial model for the braided reach in the Lower Yellow River. Water International, 29(4):455-466.
Mathematical models ; Rivers ; Erosion ; Velocity / China / Yellow River Basin
(Location: IWMI-HQ Call no: PER Record No: H036713)

5 Xia, J.; Liu, M. Y.; Jia, S. F. 2005. Water security problem in north China: Research and perspective. Pedosphere, 15(5):563-575.
Water resources ; Groundwater ; Water resource management ; Hydrology ; Models ; Water supply ; Watersheds / China
(Location: IWMI-HQ Call no: PER Record No: H037919)

6 Wei, J.; Lin, Z. H.; Xia, J.; Tao, S. Y. 2005. Interannual and interdecadal variability of atmospheric water vapor transport in the Haihe River Basin. Pedosphere, 15(5):585-594.
River basins ; Precipitation / China / Haihe River Basin
(Location: IWMI-HQ Call no: PER Record No: H037921)

7 Yuan, F.; Xie, Z. H.; Liu, Q.; Xia, J.. 2005. Simulating hydrologic changes with climate change scenarios in the Haihe River Basin. Pedosphere, 15(5):595-600.
River basins ; Climate change ; Hydrology ; Simulation models ; Calibration ; Runoff / China / Haihe River Basin
(Location: IWMI-HQ Call no: PER Record No: H037922)

8 Xia, J.; Wang, G. S.; Ye, A. Z.; Niu, C. W. 2005. A distributed monthly water balance model for analyzing impacts of land cover change on flow regimes. Pedosphere, 15(6):761-767.
Water balance ; Evapotranspiration ; Rainfall-runoff relationships ; Simulation models ; Land use ; Remote sensing / China / Beijing / Chaobai River / Miyun Reservoir
(Location: IWMI-HQ Call no: PER Record No: H038038)

9 Xia, J.; Feng, H. L.; Zhan, C. S.; Niu, C. W. 2006. Determination of a reasonable percentage for ecological water-use in the Haihe River Basin, China. Pedosphere, 16(1):33-42.
Ecology ; Water use ; River basins ; Water requirements ; Wetlands / China / Haihe River Basin
(Location: IWMI-HQ Call no: PER Record No: H038417)

10 She, D-X.; Xia, J.; Zhang, D.; Ye, A-Z.; Sood, Aditya. 2014. Regional extreme-dry-spell frequency analysis using the L-moments method in the middle reaches of the Yellow River Basin, China. Hydrological Processes, 28(17):4694-4707. [doi: https://doi.org/10.1002/hyp.9930]
River basins ; Frequency ; Analysis ; Analytical methods ; Climate change ; Precipitation ; Drought ; Flooding ; Frequency / China / Yellow River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H046187)
https://vlibrary.iwmi.org/pdf/H046187.pdf
(8.70 MB)
In this research, the regional extreme-dry-spell frequency in the middle reaches of the Yellow River Basin (YRB) is studied by the L-moments method. The research area has been divided into three subregions (regions 1, 2 and 3), which have been identified as homogenous regions. The results of a goodness-of-fit test indicate that a generalized normal distribution is the optimal regional model for regions 1 and 2 whereas a generalized Pareto distribution is the optimal regional model for region 3. The return period analysis figures out that the maximum length-of-dry-spell (MxDS) values increase from south to north in the southern part and increase from northeast to southwest in the northern part of the middle reaches of the YRB under different return periods. The increments of quantiles of dry spell under different return levels indicate that drought risk in region 1 is higher than that in regions 2 and 3. The analysis of the occurrence day of MxDS shows that MxDS mostly occurred during winter of 1998 and spring of 1999 in most stations during the considered period. By comparing summer MxDS events, it can be found that mean MxDS values have slightly increased in regions 1 and 2 during the last five decades. The maximum mean MxDS values appeared in the 2000s for regions 1 and 2 and in the 1990s for region 3. The atmospheric circulation shows that the positive anomaly centre in the west of North China, negative anomaly centre in the east of North China and the strong western Pacific subtropical high led to the decrease of precipitation in North China during the summer of 1997.

11 Xia, J.; Mo, X.; Wang, J.; Luo, X. 2015. Impacts of climate change and adaptation in agricultural water management in North China. In Hoanh, Chu Thai; Johnston, Robyn; Smakhtin, Vladimir. Climate change and agricultural water management in developing countries. Wallingford, UK: CABI. pp.63-77. (CABI Climate Change Series 8)
Climate change adaptation ; Sustainable agriculture ; Water management ; Water scarcity ; Water use efficiency ; Water stress ; Water rights ; Water rates ; Water conservation ; Food production ; Maize ; Winter wheat ; Evapotranspiration ; Irrigation management / China
(Location: IWMI HQ Call no: IWMI Record No: H047372)
http://www.iwmi.cgiar.org/Publications/CABI_Publications/climate-change-series/chapter-5.pdf
(704 KB)

12 Arheimer, B.; Cudennec, C.; Castellarin, A.; Grimaldi, S.; Heal, K. V.; Lupton, C.; Sarkar, A.; Tian, F.; Onema, J.-M. K.; Archfield, S.; Blöschl, G.; Chaffe, P. L. B.; Croke, B. F. W.; Dembélé, Moctar; Leong, C.; Mijic, A.; Mosquera, G. M.; Nlend, B.; Olusola, A. O.; Polo, M. J.; Sandells, M.; Sheffield, J.; van Hateren, T. C.; Shafiei, M.; Adla, S.; Agarwal, A.; Aguilar, C.; Andersson, J. C. M.; Andraos, C.; Andreu, A.; Avanzi, F.; Bart, R. R.; Bartosova, A.; Batelaan, O.; Bennett, J. C.; Bertola, M.; Bezak, N.; Boekee, J.; Bogaard, T.; Booij, M. J.; Brigode, P.; Buytaert, W.; Bziava, K.; Castelli, G.; Castro, C. V.; Ceperley, N. C.; Chidepudi, S. K. R.; Chiew, F. H. S.; Chun, K. P.; Dagnew, A. G.; Dekongmen, B. W.; del Jesus, M.; Dezetter, A.; do Nascimento Batista, J. A.; Doble, R. C.; Dogulu, N.; Eekhout, J. P. C.; Elçi, A.; Elenius, M.; Finger, D. C.; Fiori, A.; Fischer, S.; Förster, K.; Ganora, D.; Ellouze, E. G.; Ghoreishi, M.; Harvey, N.; Hrachowitz, M.; Jampani, Mahesh; Jaramillo, F.; Jongen, H. J.; Kareem, K. Y.; Khan, U. T.; Khatami, S.; Kingston, D. G.; Koren, G.; Krause, S.; Kreibich, H.; Lerat, J.; Liu, J.; de Brito, M. M.; Mahé, G.; Makurira, H.; Mazzoglio, P.; Merheb, M.; Mishra, A.; Mohammad, H.; Montanari, A.; Mujere, N.; Nabavi, E.; Nkwasa, A.; Alegria, M. E. O.; Orieschnig, C.; Ovcharuk, V.; Palmate, S. S.; Pande, S.; Pandey, S.; Papacharalampous, G.; Pechlivanidis, I.; Penny, G.; Pimentel, R.; Post, D. A.; Prieto, C.; Razavi, S.; Salazar-Galán, S.; Namboothiri, A. S.; Santos, P. P.; Savenije, H.; Shanono, N. J.; Sharma, A.; Sivapalan, M.; Smagulov, Z.; Szolgay, J.; Teng, J.; Teuling, A. J.; Teutschbein, C.; Tyralis, H.; van Griensven, A.; van Schalkwyk, A. J.; van Tiel, M.; Viglione, A.; Volpi, E.; Wagener, T.; Wang-Erlandsson, L.; Wens, M.; Xia, J.. 2024. The IAHS science for solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING). Hydrological Sciences Journal, 50p. (Online first) [doi: https://doi.org/10.1080/02626667.2024.2355202]
Hydrology ; Water scarcity ; Transdisciplinary research ; Local knowledge ; Water security ; Prediction ; Anthropocene ; Stakeholders ; Sustainable Development Goals
(Location: IWMI HQ Call no: e-copy only Record No: H052865)
https://www.tandfonline.com/doi/epdf/10.1080/02626667.2024.2355202?needAccess=true
https://vlibrary.iwmi.org/pdf/H052865.pdf
(4.65 MB) (4.65 MB)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO