Your search found 4 records
1 Razavi, S.. 1998. Gendered poverty and social change: An issue paper. Geneva, Switzerland: UNRISD. x, 35p. (UNRISD discussion paper no.94)
Gender ; Rural women ; Land tenure ; Poverty ; Social change ; Households ; Institutions ; Female labor / India / South Africa / Africa South of Sahara / South Asia
(Location: IWMI-HQ Call no: P 5730 Record No: H028247)
http://www.unrisd.org/unrisd/website/document.nsf/0/0e53ca577a663da780256b67005b6fb5/$FILE/dp94.pdf

2 Eamen, L.; Brouwer, R.; Razavi, S.. 2020. The economic impacts of water supply restrictions due to climate and policy change: a transboundary river basin supply-side input-output analysis. Ecological Economics, 172:106532. (Online first) [doi: https://doi.org/10.1016/j.ecolecon.2019.106532]
Water supply ; Restrictions ; Economic impact ; Input output analysis ; Climate change ; Water policy ; International waters ; River basins ; Water use ; Water intake ; Models ; Rainfed farming ; Crop production ; Animal production / Canada / Saskatchewan River Basin / Alberta / Manitoba
(Location: IWMI HQ Call no: e-copy only Record No: H049671)
https://vlibrary.iwmi.org/pdf/H049671.pdf
(6.01 MB)
Finding sustainable pathways to efficiently allocate limited available water resources among increasingly competing water uses has become crucial due to climate-change-induced water shortages and increasing water demand. This has led to an urgent need for the inclusion of economic principles, models, and methods in water resources management. Although several studies have developed macro-economic models to evaluate the economic impacts of alternative water allocation strategies, many if not most ignore the hydrological boundaries of transboundary river basins. Furthermore, of those using input-output (IO) models, only a handful have applied supply-side IO models. In this paper, we present one of the first attempts to develop an inter-regional, supply-side IO modelling framework for a multi-jurisdictional, transboundary river basin to assess the direct and indirect economic impacts of water supply restrictions due to climate and policy change. Applying this framework to the Saskatchewan River Basin in Canada encompassing three provinces, we investigate the economic impacts of two different water supply restriction scenarios on the entire river basin and its sub-basins individually. We find that in the face of climate-change-induced water shortage, economic losses can be reduced by almost 50% by adopting appropriate management practices, including prioritization of water allocation, using alternative water sources, and water re-use technologies.

3 Sedighkia, M.; Fathi, Z.; Razavi, S.; Abdoli, A. 2022. Optimal agricultural plan for minimizing ecological impacts on river ecosystems. Irrigation Science, 14p. (Online first) [doi: https://doi.org/10.1007/s00271-022-00834-7]
Agricultural development ; Environmental flows ; Ecological factors ; River basins ; Ecosystems ; Deficit irrigation ; Drought ; Cropping patterns ; Case studies ; Models / Iran Islamic Republic / Kurdistan / Ghujam River
(Location: IWMI HQ Call no: e-copy only Record No: H051541)
https://vlibrary.iwmi.org/pdf/H051541.pdf
(3.35 MB)
The present study proposes and evaluates an integrated optimization framework for agricultural planning in which an environmental flow model, drought analysis, cropping pattern model, and deficit irrigation functions are linked. Fuzzy physical habitat simulation was used to assess the environmental flow regime. A regression model was applied to develop the deficit irrigation functions. Average river flow time series in three hydrological conditions (dry, normal, and wet) were obtained using drought analysis. The environmental flow model, cropping pattern model, deficit irrigation functions, and river flow time series were then used in the structure of the optimization model. The goal of the optimization model is to provide an agricultural plan, including optimal cropping patterns and irrigation supply that minimizes ecological impacts on the river ecosystem. A genetic algorithm was used in the optimization process. Based on case study results, the proposed model is able to minimize ecological impacts on the river ecosystem in all hydrological conditions and propose an optimal plan for cropping patterns and irrigation supply. The difference between average revenue in the optimal plan and current conditions in all simulated hydrological conditions is less than 10%, which means the optimization system provides a sustainable plan for agricultural and environmental management.

4 Arheimer, B.; Cudennec, C.; Castellarin, A.; Grimaldi, S.; Heal, K. V.; Lupton, C.; Sarkar, A.; Tian, F.; Onema, J.-M. K.; Archfield, S.; Blöschl, G.; Chaffe, P. L. B.; Croke, B. F. W.; Dembélé, Moctar; Leong, C.; Mijic, A.; Mosquera, G. M.; Nlend, B.; Olusola, A. O.; Polo, M. J.; Sandells, M.; Sheffield, J.; van Hateren, T. C.; Shafiei, M.; Adla, S.; Agarwal, A.; Aguilar, C.; Andersson, J. C. M.; Andraos, C.; Andreu, A.; Avanzi, F.; Bart, R. R.; Bartosova, A.; Batelaan, O.; Bennett, J. C.; Bertola, M.; Bezak, N.; Boekee, J.; Bogaard, T.; Booij, M. J.; Brigode, P.; Buytaert, W.; Bziava, K.; Castelli, G.; Castro, C. V.; Ceperley, N. C.; Chidepudi, S. K. R.; Chiew, F. H. S.; Chun, K. P.; Dagnew, A. G.; Dekongmen, B. W.; del Jesus, M.; Dezetter, A.; do Nascimento Batista, J. A.; Doble, R. C.; Dogulu, N.; Eekhout, J. P. C.; Elçi, A.; Elenius, M.; Finger, D. C.; Fiori, A.; Fischer, S.; Förster, K.; Ganora, D.; Ellouze, E. G.; Ghoreishi, M.; Harvey, N.; Hrachowitz, M.; Jampani, Mahesh; Jaramillo, F.; Jongen, H. J.; Kareem, K. Y.; Khan, U. T.; Khatami, S.; Kingston, D. G.; Koren, G.; Krause, S.; Kreibich, H.; Lerat, J.; Liu, J.; de Brito, M. M.; Mahé, G.; Makurira, H.; Mazzoglio, P.; Merheb, M.; Mishra, A.; Mohammad, H.; Montanari, A.; Mujere, N.; Nabavi, E.; Nkwasa, A.; Alegria, M. E. O.; Orieschnig, C.; Ovcharuk, V.; Palmate, S. S.; Pande, S.; Pandey, S.; Papacharalampous, G.; Pechlivanidis, I.; Penny, G.; Pimentel, R.; Post, D. A.; Prieto, C.; Razavi, S.; Salazar-Galán, S.; Namboothiri, A. S.; Santos, P. P.; Savenije, H.; Shanono, N. J.; Sharma, A.; Sivapalan, M.; Smagulov, Z.; Szolgay, J.; Teng, J.; Teuling, A. J.; Teutschbein, C.; Tyralis, H.; van Griensven, A.; van Schalkwyk, A. J.; van Tiel, M.; Viglione, A.; Volpi, E.; Wagener, T.; Wang-Erlandsson, L.; Wens, M.; Xia, J. 2024. The IAHS science for solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING). Hydrological Sciences Journal, 50p. (Online first) [doi: https://doi.org/10.1080/02626667.2024.2355202]
Hydrology ; Water scarcity ; Transdisciplinary research ; Local knowledge ; Water security ; Prediction ; Anthropocene ; Stakeholders ; Sustainable Development Goals
(Location: IWMI HQ Call no: e-copy only Record No: H052865)
https://www.tandfonline.com/doi/epdf/10.1080/02626667.2024.2355202?needAccess=true
https://vlibrary.iwmi.org/pdf/H052865.pdf
(4.65 MB) (4.65 MB)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO