Your search found 2 records
1 Islam, S. M. M.; Gaihre, Y. K.; Islam, Md. R.; Ahmed, Md. N.; Akter, M.; Singh, U.; Sander, B. O. 2022. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Journal of Environmental Management, 307:114520. (Online first) [doi: https://doi.org/10.1016/j.jenvman.2022.114520]
Irrigated rice ; Greenhouse gas emissions ; Emission reduction ; Irrigated farming ; Water management ; Global warming ; Fertilizers ; Nitrous oxide ; Methane emission ; Urea ; Use efficiency ; Crop management ; Integrated plant nutrient management / Bangladesh / Gazipur
(Location: IWMI HQ Call no: e-copy only Record No: H050888)
https://www.sciencedirect.com/science/article/pii/S0301479722000937/pdfft?md5=0eaa9b512d6b0a05efd7497c1b19b265&pid=1-s2.0-S0301479722000937-main.pdf
https://vlibrary.iwmi.org/pdf/H050888.pdf
(0.91 MB) (928 KB)
Greenhouse gas (GHG) emissions from agriculture sector play an important role for global warming and climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. The efficient management of nitrogen fertilizer using urea deep placement (UDP) and the use of the water-saving alternate wetting and drying (AWD) irrigation could mitigate greenhouse gas (GHG) emissions and reduce environmental pollution. However, there is a dearth of studies on the impacts of UDP and the integrated plant nutrient system (IPNS) which combines poultry manure and prilled urea (PU) with different irrigation regimes on GHG emissions, nitrogen use efficiency (NUE) and rice yields. We conducted field experiments during the dry seasons of 2018, 2019, and 2020 to compare the effects of four fertilizer treatments including control (no N), PU, UDP, and IPNS in combination with two irrigation systems— (AWD and continuous flooding, CF) on GHG emissions, NUE and rice yield. Fertilizer treatments had significant (p < 0.05) interaction effects with irrigation regimes on methane (CH4) and nitrous oxide (N2O) emissions. PU reduced CH4 and N2O emissions by 6% and 20% compared to IPNS treatment, respectively under AWD irrigation, but produced similar emissions under CF irrigation. Similarly, UDP reduced cumulative CH4 emissions by 9% and 15% under AWD irrigation, and 9% and 11% under CF condition compared to PU and IPNS treatments, respectively. Across the year and fertilizer treatments, AWD irrigation significantly (p < 0.05) reduced cumulative CH4 emissions and GHG intensity by 28%, and 26%, respectively without significant yield loss compared to CF condition. Although AWD irrigation increased cumulative N2O emissions by 73%, it reduced the total global warming potential by 27% compared to CF irrigation. The CH4 emission factor for AWD was lower (1.67 kg ha-1 day-1) compared to CF (2.33 kg ha-1 day-1). Across the irrigation regimes, UDP increased rice yield by 21% and N recovery efficiency by 58% compared to PU. These results suggest that both UDP and AWD irrigation might be considered as a carbon-friendly technology.

2 Haque, A.; Shampa; Akter, M.; Hussain, Md. M.; Rahman, Md. R.; Salehin, M.; Rahman, M. 2024. An integrated risk-based early warning system to increase community resilience against disaster. Progress in Disaster Science, 21:100310. [doi: https://doi.org/10.1016/j.pdisas.2023.100310]
Disaster risk reduction ; Flood forecasting ; Communities ; Resilience ; Early warning systems ; Model ; Sustainable Development Goals ; Vulnerability ; Villages ; Indicators ; River water ; Water levels / Bangladesh / Kurigram
(Location: IWMI HQ Call no: e-copy only Record No: H052633)
https://www.sciencedirect.com/science/article/pii/S2590061723000376/pdfft?md5=40313c2dfaa230bcc2d53032aa35f8bf&pid=1-s2.0-S2590061723000376-main.pdf
https://vlibrary.iwmi.org/pdf/H052633.pdf
(9.74 MB) (9.74 MB)
The need to integrate Early Warning System (EWS) with Disaster Risk Reduction (DRR) has long been recognized in several global forums. In the year 2006, the United Nations International Strategy for Disaster Reduction (UNISDR) proposed an Integrated Risk-based EWS (IR-EWS) by integrating four elements: (1) Monitoring and warning service; (2) Risk knowledge; (3) Dissemination and communication; and (4) Response capability. Nearly after two decades of the UNISDR proposal, our study finds that there are still gaps in making IR-EWS operational. Our study also finds that works on conceptualizing integration of resilience against disaster with EWS as part of DRR (in line with SDG-13) has not yet been started. Against this backdrop, in this study we developed an IR-EWS for flood termed as Dynamic Flood Risk Model (DFRM) which contains: (1) simple risk-based warning numbers which are easily understandable and communicable to the community, with risk considered as a proxy for resilience; and (2) capital-based action plans in relation to community capital to reduce disaster risk and increase community resilience against disaster. The DFRM is applied in two flood-prone districts in Bangladesh and found to be acceptable to the community with reasonable accuracy. The model is the customized version of flood for generic IR-EWS. This study can be considered as the first attempt of the next generation IR-EWS where risk is represented by simple warning numbers and where EWS (as part of DRR) can be applied to increase the resilience.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO