Your search found 3 records
1 Khanal, S.; Lutz, A. F.; Kraaijenbrink, P. D. A.; van den Hurk, B.; Yao, T.; Immerzeel, W. W. 2021. Variable 21st century climate change response for rivers in high mountain Asia at seasonal to decadal time scales. Water Resources Research, 57(5):e2020WR029266. [doi: https://doi.org/10.1029/2020WR029266]
Climate change ; River basins ; Mountains ; Hydrology ; Models ; Time series analysis ; Water availability ; Precipitation ; Glaciers ; Snow cover ; Rainfall-runoff relationships ; Temperature ; Monsoons ; Discharges / Asia / Amu Darya Basin / Balkash Basin / Brahmaputra Basin / Ganges Basin / Helmand Basin / Indus Basin / Irrawaddy Basin / Mekong Basin / Salween Basin / Syr Darya Basin / Tarim Basin / Yangtze Basin / Yellow River / Tibetan Plateau
(Location: IWMI HQ Call no: e-copy only Record No: H050398)
https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020WR029266
https://vlibrary.iwmi.org/pdf/H050398.pdf
(4.00 MB) (4.00 MB)
The hydrological response to climate change in mountainous basins manifests itself at varying spatial and temporal scales, ranging from catchment to large river basin scale and from sub-daily to decade and century scale. To robustly assess the 21st century climate change impact for hydrology in entire High Mountain Asia (HMA) at a wide range of scales, we use a high resolution cryospheric-hydrological model covering 15 upstream HMA basins to quantify the compound effects of future changes in precipitation and temperature based on the range of climate change projections in the Coupled Model Intercomparison Project Phase 6 climate model ensemble. Our analysis reveals contrasting responses for HMA's rivers, dictated by their hydrological regimes. At the seasonal scale, the earlier onset of melting causes a shift in the magnitude and peak of water availability, to earlier in the year. At the decade to century scale, after an initial increase, the glacier melt declines by the mid or end of the century except for the Tarim river basin, where it continues to increase. Despite a large variability in hydrological regimes across HMA's rivers, our results indicate relatively consistent climate change responses across HMA in terms of total water availability at decadal time scales. Although total water availability increases for the headwaters, changes in seasonality and magnitude may diverge widely between basins and need to be addressed while adapting to future changes in a region where food security, energy security as well as biodiversity, and the livelihoods of many depend on water from HMA.

2 Lutz, A. F.; Immerzeel, W. W.; Siderius, C.; Wijngaard, R. R.; Nepal, Santosh; Shrestha, A. B.; Wester, P.; Biemans, H. 2022. South Asian agriculture increasingly dependent on meltwater and groundwater. Nature Climate Change, 12(6):566-573. [doi: https://doi.org/10.1038/s41558-022-01355-z]
Meltwater ; Groundwater ; Agriculture ; Irrigated farming ; Climate change ; Forecasting ; Hydrological modelling ; Socioeconomic aspects ; Water availability ; Water supply ; Water demand ; Irrigation water ; Water extraction ; Rain ; Runoff ; Glaciers ; River basins ; Monsoon climate ; Crops / South Asia / Indus River Basin / Ganges River Basin / Brahmaputra River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051247)
https://vlibrary.iwmi.org/pdf/H051247.pdf
(4.42 MB)
Irrigated agriculture in South Asia depends on meltwater, monsoon rains and groundwater. Climate change alters the hydrology and causes shifts in the timing, composition and magnitude of these sources of water supply. Simultaneously, socio-economic growth increases water demand. Here we use a high-resolution cryosphere–hydrology–crop model forced with an ensemble of climate and socio-economic projections to assess how the sources of irrigation water supply may shift during the twenty-first century. We find increases in the importance of meltwater and groundwater for irrigated agriculture. An earlier melt peak increases meltwater withdrawal at the onset of the cropping season in May and June in the Indus, whereas increasing peak irrigation water demand during July and August aggravates non-renewable groundwater pumping in the Indus and Ganges despite runoff increases. Increasing inter-annual variability in rainfall runoff increases the need for meltwater and groundwater to complement rainfall runoff during future dry years.

3 Smolenaars, W. J.; Jamil, M. K.; Dhaubanjar, S.; Lutz, A. F.; Immerzeel, W.; Ludwig, F.; Biemans, H. 2023. Exploring the potential of agricultural system change as an integrated adaptation strategy for water and food security in the Indus Basin. Environment, Development and Sustainability, 36p. (Online first) [doi: https://doi.org/10.1007/s10668-023-03245-6]
Farming systems ; Strategies ; Food security ; Water security ; Water demand ; Population growth ; Climate change ; Sustainable Development Goals ; Policies ; Agricultural development ; Socioeconomic aspects ; Food production ; Drought stress ; Hydrological modelling ; Surface water ; Land use ; Water use / Pakistan / India / Indus Basin
(Location: IWMI HQ Call no: e-copy only Record No: H051867)
https://link.springer.com/content/pdf/10.1007/s10668-023-03245-6.pdf?pdf=button
https://vlibrary.iwmi.org/pdf/H051867.pdf
(6.50 MB) (6.50 MB)
Water security and food security in the Indus basin are highly interlinked and subject to severe stresses. Irrigation water demands presently already exceed what the basin can sustainably provide, but per-capita food availability remains limited. Rapid population growth and climate change are projected to further intensify pressure on the interdependencies between water and food security. The agricultural system of the Indus basin must therefore change and adapt to be able to achieve the associated Sustainable Development Goals (SDGs). The development of robust policies to guide such changes requires a thorough understanding of the synergies and trade-offs that different strategies for agricultural development may have for water and food security. In this study, we defined three contrasting trajectories for agricultural system change based on a review of scientific literature on regional agricultural developments and a stakeholder consultation workshop. We assessed the consequences of these trajectories for water and food security with a spatially explicit modeling framework for two scenarios of climatic and socio-economic change over the period 1980–2080. Our results demonstrate that agricultural system changes can ensure per capita food production in the basin remains sufficient under population growth. However, such changes require additional irrigation water resources and may strongly aggravate water stress. Conversely, a shift to sustainable water management can reduce water stress but has the consequence that basin-level food self-sufficiency may not be feasible in future. This suggests that biophysical limits likely exist that prevent agricultural system changes to ensure both sufficient food production and improve water security in the Indus basin under strong population growth. Our study concludes that agricultural system changes are an important adaptation mechanism toward achieving water and food SDGs, but must be developed alongside other strategies that can mitigate its adverse trade-offs.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO