Your search found 4 records
1 Patra, S.; Parihar, C. M.; Mahala, D. M.; Singh, D.; Nayak, H. S.; Patra, K.; Reddy, K. S.; Pradhan, S.; Sena, Dipaka Ranjan. 2023. Influence of long-term tillage and diversified cropping systems on hydro-physical properties in a sandy loam soil of North-western India. Soil and Tillage Research, 229:105655. [doi: https://doi.org/10.1016/j.still.2023.105655]
Cropping systems ; Diversification ; Tillage ; Hydraulic conductivity ; Soil physical properties ; Sandy loam soils ; Soil aggregates ; Soil organic carbon ; Conservation agriculture ; Maize ; Wheat ; Mung beans ; Chickpeas ; Mustard ; Sesbania / India / New Delhi
(Location: IWMI HQ Call no: e-copy only Record No: H051761)
https://vlibrary.iwmi.org/pdf/H051761.pdf
(2.53 MB)
A study was conducted to determine the combined effects of three tillage practices and four maize (Zea mays L.)- based cropping systems on physical, saturated, and near-saturated hydraulic properties in a sandy loam soil of North-Western India. Split-plot experimental design was adopted with tillage [conventional tillage (CT), zero tillage (ZT), and permanent raised bed (PB)] as the main plot treatments and intensified crop rotations [Maize (Zea mays L.)-Wheat (Triticum aestivum)-Greengram (Vigna radiata L.) (MWGg), Maize-Chickpea (Cicer arietinum L.)-Sesbania (Sesbania aculeata) (MCpSb), Maize-Mustard (Brassica juncea) -Greengram (MMuGg) and MaizeMaize-Sesbania (MMSb)] as subplot treatments. The saturated and near-saturated soil hydraulic conductivity were derived from steady-state infiltration rates measured using a hood infiltrometer on the surface soil at 0, - 1, and - 3 cm pressure heads. The long-term (10 years) study revealed that the bulk density (BD) of the soil under conservation agriculture (CA) practices (PB and ZT) was significantly (P = 0.05) lower than that in CT practices. The soil BD in the MCpSb cropping system was measured to be the lowest (1.24 g cm- 3 ) among all the cropping systems. The soil aggregate mean weight diameter (MWD) under PB and ZT was determined to be 31% and 27% higher than in the CT treatments. In tillage × cropping systems interactions, the highest MWD was observed in the PB×MWGg. The saturated and near-saturated hydraulic conductivity (K(h)) were estimated to have higher values in CA practices (PB and ZT) than in the CT treatments. In the case of cropping systems, the soil’s mean field saturated hydraulic conductivity was estimated to be significantly (P < 0.05) higher under the MWGg, MCpSb, and MMuGg than the MMSb. The present study indicates that conservation agriculture-based crop management with diversified maize-based rotation (MCpSb, MWGg, and MMuGg) could be promising alternatives to conventional tillage practices (CT). Among the cropping system choices, MWGg was more effective in improving the soil’s hydro-physical properties in the study area.

2 Patra, K.; Parihar, C. M.; Nayak, H. S.; Rana, B.; Sena, Dipaka R.; Anand, A.; Reddy, K. S.; Chowdhury, M.; Pandey, R.; Kumar, A.; Singh, L. K.; Ghatala, M. K.; Sidhu, H. S.; Jat, M. L. 2023. Appraisal of complementarity of subsurface drip fertigation and conservation agriculture for physiological performance and water economy of maize. Agricultural Water Management, 283:108308. [doi: https://doi.org/10.1016/j.agwat.2023.108308]
Conservation agriculture ; Subsurface irrigation ; Drip fertigation ; Drip irrigation ; Nitrogen-use efficiency ; Water productivity ; Maize ; Photosynthesis ; Irrigation management ; Irrigation water ; Irrigation methods ; Water-use efficiency ; Tillage ; Residues ; Leaf area index ; Crop yield ; Economic analysis ; Technology / India / Punjab
(Location: IWMI HQ Call no: e-copy only Record No: H051898)
https://www.sciencedirect.com/science/article/pii/S0378377423001737/pdfft?md5=f53db56ada3c45b634c4587196f5b402&pid=1-s2.0-S0378377423001737-main.pdf
https://vlibrary.iwmi.org/pdf/H051898.pdf
(3.00 MB) (3.00 MB)
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.

3 Rana, B.; Parihar, C. M.; Jat, M. L.; Patra, K.; Nayak, H. S.; Reddy, K. S.; Sarkar, A.; Anand, A.; Naguib, W.; Gupta, N.; Sena, Dipaka R.; Sidhu, H. S.; Singh, R.; Singh, R.; Abdallah, A. M. 2023. Combining sub-surface fertigation with conservation agriculture in intensively irrigated rice under rice-wheat system can be an option for sustainably improving water and nitrogen use-efficiency. Field Crops Research, 302:109074. [doi: https://doi.org/10.1016/j.fcr.2023.109074]
Subsurface irrigation ; Drip irrigation ; Water-use efficiency ; Nitrogen-use efficiency ; Crop yield ; Fertigation ; Conservation agriculture ; Irrigated rice / India / Indo-Gangetic Plains / Punjab
(Location: IWMI HQ Call no: e-copy only Record No: H052334)
https://vlibrary.iwmi.org/pdf/H052334.pdf
(1.86 MB)
Context: The rice-wheat cropping system in the Indo-Gangetic plains (IGP) of South Asia has been shown to have higher productivity. However, this benefit is offset by the unsustainable over-drafting of groundwater resources. Given the growing scarcity of water, it is imperative to investigate alternative crop establishment and irrigation methods that do not rely on the conventional puddled transplanting method (PTR). Objective: This study aims to assess the impact of combining conservation agriculture-CA with sub-surface drip irrigation-SSD referred to as CA+, at different nitrogen (N) doses on physiological performance, crop yield, irrigation and nitrogen use-efficiency, as well as farm profitability of rice in the north-western IGP of India. Method: A two-year field experiment was conducted to assess the effects of medium-term CA and the combination of CA with SSD (CA+) at three levels of N (0%, 75%, and 100% of the recommended dose), in comparison to PTR using recommended dose of nitrogen-RDN (120 kg N ha-1). Indicators of crop growth (under CA, CA+), i.e., biomass, grain yield, water-use, water-use efficiency (WUE), nitrogen-use efficiency (NUE), and economic analysis of rice production were evaluated and compared with PTR. Result: The results revealed that the PTR plots produced 15% and 11% higher grain yield than CA and CA+ systems, respectively, even at 100%RDN, due to a significantly higher number of fertile tillers. However, the application of 100%RDN and irrigation through SSD resulted in a significant increase in nitrogen uptake (4.5%) and remobilization (7.5%) into the grain compared to PTR. The CA+ plots demonstrated a reduction in irrigation water usage by 1.5 and 2 times compared to the CA and PTR systems, leading to a respective increase in WUE by 1.6% and 1.8%. PTR exhibited highest net returns, while the CA+ treatment– SSD-N100 achieved the highest benefit-cost ratio. Conclusion: The combination of CA with SSD at 100%RDN offers significant benefits, including notable water saving, improved WUE, NUE and crop yield. This integrated approach presents a promising solution to address the pressing issues of food security and sustainability arising from water scarcity and groundwater depletion in South Asia. Future implication: There is a need to increase awareness among farmers about the benefits of CA coupled with SSD i.e., CA+ , for water-intensive rice-based systems. Additionally, further research should focus on identifying ideal rice cultivars suitable for CA+ systems and determining the optimal specifications for drip lines and emitter discharge rates for diverse water-scarce agro-ecological conditions.

4 Kumar, K.; Parihar, C. M.; Nayak, H. S.; Sena, Dipaka R.; Godara, S.; Dhakar, R.; Patra, K.; Sarkar, A.; Bharadwaj, S.; Ghasal, P. C.; Meena, A. L.; Reddy, K. S.; Das, T. K.; Jat, S. L.; Sharma, D. K.; Saharawat, Y. S.; Singh, U.; Jat, M. L.; Gathala, M. K. 2024. Modeling maize growth and nitrogen dynamics using CERES-Maize (DSSAT) under diverse nitrogen management options in a conservation agriculture-based maize-wheat system. Scientific Reports, 14:11743. [doi: https://doi.org/10.1038/s41598-024-61976-6]
Maize ; Plant growth ; Modelling ; Nitrogen ; Ammonia ; Volatilization ; Conservation agriculture ; Wheat ; Zero tillage ; Leaf area index ; Biomass ; Grain ; Crop yield ; Forecasting / India / New Delhi
(Location: IWMI HQ Call no: e-copy only Record No: H052860)
https://www.nature.com/articles/s41598-024-61976-6.pdf
https://vlibrary.iwmi.org/pdf/H052860.pdf
(2.40 MB) (2.40 MB)
Agricultural field experiments are costly and time-consuming, and often struggling to capture spatial and temporal variability. Mechanistic crop growth models offer a solution to understand intricate crop-soil-weather system, aiding farm-level management decisions throughout the growing season. The objective of this study was to calibrate and the Crop Environment Resource Synthesis CERES-Maize (DSSAT v 4.8) model to simulate crop growth, yield, and nitrogen dynamics in a long-term conservation agriculture (CA) based maize system. The model was also used to investigate the relationship between, temperature, nitrate and ammoniacal concentration in soil, and nitrogen uptake by the crop. Additionally, the study explored the impact of contrasting tillage practices and fertilizer nitrogen management options on maize yields. Using field data from 2019 and 2020, the DSSAT-CERES-Maize model was calibrated for plant growth stages, leaf area index-LAI, biomass, and yield. Data from 2021 were used to evaluate the model's performance. The treatments consisted of four nitrogen management options, viz., N0 (without nitrogen), N150 (150 kg N/ha through urea), GS (Green seeker-based urea application) and USG (urea super granules @150kg N/ha) in two contrasting tillage systems, i.e., CA-based zero tillage-ZT and conventional tillage-CT. The model accurately simulated maize cultivar’s anthesis and physiological maturity, with observed value falling within 5% of the model’s predictions range. LAI predictions by the model aligned well with measured values (RMSE 0.57 and nRMSE 10.33%), with a 14.6% prediction error at 60 days. The simulated grain yields generally matched with measured values (with prediction error ranging from 0 to 3%), except for plots without nitrogen application, where the model overestimated yields by 9–16%. The study also demonstrated the model's ability to accurately capture soil nitrate–N levels (RMSE 12.63 kg/ha and nRMSE 12.84%). The study concludes that the DSSAT-CERES-Maize model accurately assessed the impacts of tillage and nitrogen management practices on maize crop’s growth, yield, and soil nitrogen dynamics. By providing reliable simulations during the growing season, this modelling approach can facilitate better planning and more efficient resource management. Future research should focus on expanding the model's capabilities and improving its predictions further.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO