Your search found 2 records
1 Groner, V. P.; Nicholas, O.; Mabhaudhi, Tafadzwanashe; Slotow, R.; Akcakaya, H. R.; Mace, G. M.; Pearson, R. G. 2022. Climate change, land cover change, and overharvesting threaten a widely used medicinal plant in South Africa. Ecological Applications, 32(4):e2545. [doi: https://doi.org/10.1002/eap.2545]
Climate change ; Land cover change ; Medicinal plants ; Resource depletion ; Ecosystem services ; Species ; Habitat loss ; Conservation ; Biodiversity ; Models / South Africa
(Location: IWMI HQ Call no: e-copy only Record No: H051023)
https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/eap.2545
https://vlibrary.iwmi.org/pdf/H051023.pdf
(0.83 MB) (846 KB)
Medicinal plants contribute substantially to the well-being of people in large parts of the world, providing traditional medicine and supporting livelihoods from trading plant parts, which is especially significant for women in low-income communities. However, the availability of wild medicinal plants is increasingly threatened; for example, the Natal Lily (Clivia miniata), which is one of the most widely traded plants in informal medicine markets in South Africa, lost over 40% of individuals over the last 90 years. Understanding the species’ response to individual and multiple pressures is essential for prioritizing and planning conservation actions. To gain this understanding, we simulated the future range and abundance of C. miniata by coupling Species Distribution Models with a metapopulation model (RAMAS-GIS). We contrasted scenarios of climate change (RCP2.6 vs. RCP8.5), land cover change (intensification vs. expansion), and harvesting (only juveniles vs. all life stages). All our scenarios pointed to continuing declines in suitable habitat and abundance by the 2050s. When acting independently, climate change, land cover change, and harvesting each reduced the projected abundance substantially, with land cover change causing the most pronounced declines. Harvesting individuals from all life stages affected the projected metapopulation size more negatively than extracting only juveniles. When the three pressures acted together, declines of suitable habitat and abundance accelerated but uncertainties were too large to identify whether pressures acted synergistically, additively, or antagonistically. Our results suggest that conservation should prioritize the protection of suitable habitat and ensure sustainable harvesting to support a viable metapopulation under realistic levels of climate change. Inadequate management of C. miniata populations in the wild will likely have negative consequences for the well-being of people relying on this ecosystem service, and we expect there may be comparable consequences relating to other medicinal plants in different parts of the world.

2 Mabhaudhi, Tafadzwanashe; Hlahla, S.; Chimonyo, V. G. P.; Henriksson, R.; Chibarabada, T. P.; Murugani, V. G.; Groner, V. P.; Tadele, Z.; Sobratee, N.; Slotow, R.; Modi, A. T.; Baudron, F.; Chivenge, P. 2022. Diversity and diversification: ecosystem services derived from underutilized crops and their co-benefits for sustainable agricultural landscapes and resilient food systems in Africa. Frontiers in Agronomy, 4:859223. [doi: https://doi.org/10.3389/fagro.2022.859223]
Biodiversity ; Ecosystem services ; Underutilized species ; Crops ; Diversification ; Sustainable agriculture ; Food security ; Nutrition security ; Poverty alleviation ; Sustainable livelihoods ; Agricultural landscape ; Food systems ; Resilience ; Gender equality ; Role of women ; Income ; Socioeconomic development ; Sustainable Development Goals ; Climate change ; Ecological factors ; Habitats ; Cultural services ; Policies ; Systematic reviews / Africa
(Location: IWMI HQ Call no: e-copy only Record No: H051093)
https://www.frontiersin.org/articles/10.3389/fagro.2022.859223/pdf
https://vlibrary.iwmi.org/pdf/H051093.pdf
(2.48 MB) (2.48 MB)
There are growing calls to adopt more sustainable forms of agriculture that balance the need to increase production with environmental, human health, and wellbeing concerns. Part of this conversation has included a debate on promoting and mainstreaming neglected and underutilized crop species (NUS) because they represent a more ecologically friendly type of agriculture. We conducted a systematic review to determine the ecosystem services derived from NUS and assess their potential to promote functional ecological diversity, food and nutritional security, and transition to more equitable, inclusive, sustainable and resilient agricultural landscapes and food systems in Africa. Our literature search yielded 35 articles for further analysis. The review showed that NUS provide various provisioning, regulating, cultural, and supporting ecosystem services and several environmental and health co-benefits, dietary diversity, income, sustainable livelihood outcomes, and economic empowerment, especially for women. Importantly, NUS address the three pillars of sustainable development- ecological, social, and economic. Thus, NUS may provide a sustainable, fit-for-purpose transformative ecosystem-based adaptation solution for Africa to transition to more sustainable, healthy, equitable, and resilient agricultural landscapes and food systems.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO