Your search found 2 records
1 Tirupathi, C.; Shashidhar, T.; Pandey, Vishnu P.; Shrestha, S. 2019. Fuzzy-based approach for evaluating groundwater sustainability of Asian cities. Sustainable Cities and Society, 44:321-331. [doi: https://doi.org/10.1016/j.scs.2018.09.027]
Water resources ; Groundwater ; Sustainability ; Evaluation ; Towns ; Models ; Fuzzy logic ; Water stress ; Water policy ; Legislation ; Stakeholders ; Knowledge management ; Institutions ; Indicators ; Monitoring / Asia / India / Pakistan / Thailand / Vietnam / Myanmar / Hyderabad / Lahore / Bangkok / Ho Chi Minh City / Yangon
(Location: IWMI HQ Call no: e-copy only Record No: H048981)
https://vlibrary.iwmi.org/pdf/H048981.pdf
(5.42 MB)
The objective of this research is to develop a fuzzy-based groundwater sustainability index (FGSI) model to evaluate the sustainability of groundwater system at selected cities in Asian.
The new Mamdani type fuzzy-based inference system known as FGSI was developed. It contains five components and twenty-four indicators, which covers five dimensions of sustainability, namely, environmental, social, economic, mutual trust, and institutional. The FGSI model offers a novel combination of indicators, which covers aspects of groundwater quality, quantity, and management. An attempt was made to develop a robust index for estimating the groundwater sustainability. The model was evaluated for selected cities in Asian with different difuzzification methods, and compared with the conventional method. The centroid defuzzification method produced well diversified results compared with other methods, including conventional method. The overall groundwater sustainability of Hyderabad of India was estimated as highly sustainable and, Lahore of Pakistan, Bangkok of Thailand, Ho Chi Minh City of Vietnam and Yangon City of Myanmar were estimated as moderately sustainable. The FGSI model may help to policy and decision makers to provide a reliable and resilient sustainable management system in the cities by identifying the indicators for the improvement.

2 Wilkinson, J. L.; Boxall, A. B. A.; Kolpin, D. W.; Leung, K. M. Y.; Lai, R. W. S.; Galban-Malagon, C.; Adell, A. D.; Mondon, J.; Metian, M.; Marchant, R. A.; Bouzas-Monroy, A.; Cuni-Sanchez, A.; Coors, A.; Carriquiriborde, P.; Rojo, M.; Gordon, C.; Cara, M.; Moermond, M.; Luarte, T.; Petrosyan, V.; Perikhanyan, Y.; Mahon, C. S.; McGurk, C. J.; Hofmann, T.; Kormoker, T.; Iniguez, V.; Guzman-Otazo, J.; Tavares, J. L.; De Figueiredo, F. G.; Razzolini, M. T. P.; Dougnon, V.; Gbaguidi, G.; Traore, O.; Blais, J. M.; Kimpe, L. E.; Wong, M.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Ying, G.-G.; Chen, C.-E.; Paez, M.; Martinez-Lara, J.; Otamonga, J.-P.; Pote, J.; Ifo, S. A.; Wilson, P.; Echeverria-Saenz, S.; Udikovic-Kolic, N.; Milakovic, M.; Fatta-Kassinos, D.; Ioannou-Ttofa, L.; Belusova, V.; Vymazal, J.; Cardenas-Bustamante, M.; Kassa, B. A.; Garric, J.; Chaumot, A.; Gibba, P.; Kunchulia, I.; Seidensticker, S.; Lyberatos, G.; Halldorsson, H. P.; Melling, M.; Shashidhar, T.; Lamba, M.; Nastiti, A.; Supriatin, A.; Pourang, N.; Abedini, A.; Abdullah, O.; Gharbia, S. S.; Pilla, F.; Chefetz, B.; Topaz, T.; Yao, K. M.; Aubakirova, B.; Beisenova, R.; Olaka, L.; Mulu, J. K.; Chatanga, P.; Ntuli, V.; Blama, N. T.; Sherif, S.; Aris, A. Z.; Looi, L. J.; Niang, M.; Traore, S. T.; Oldenkamp, R.; Ogunbanwo, O.; Ashfaq, M.; Iqbal, M.; Abdeen, Z.; O’Dea, A.; Morales-Saldana, J. M.; Custodio, M.; de la Cruz, H.; Navarrete, I.; Carvalho, F.; Gogra, A. B.; Koroma, B. M.; Cerkvenik-Flajs, V.; Gombac, M.; Thwala, M.; Choi, K.; Kang, H.; Ladu, J. L. C.; Rico, A.; Amerasinghe, Priyanie; Sobek, A.; Horlitz, G.; Zenker, A. K.; King, A. C.; Jiang, J.-J.; Kariuki, R.; Tumbo, M.; Tezel, U.; Onay, T. T.; Lejju, J. B.; Vystavna, Y.; Vergeles, Y.; Heinzen, H.; Perez-Parada, A.; Sims, D. B.; Figy, M.; Good, D.; Teta, C. 2022. Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences of the United States of America, 119(8):e2113947119. [doi: https://doi.org/10.1073/pnas.2113947119]
Pharmaceutical pollution ; Rivers ; Water pollution ; Contamination ; Aquatic environment ; Antimicrobials ; Environmental health ; Human health ; Environmental monitoring ; Wastewater ; Socioeconomic aspects ; National income ; Datasets
(Location: IWMI HQ Call no: e-copy only Record No: H050958)
https://www.pnas.org/content/pnas/119/8/e2113947119.full.pdf
https://vlibrary.iwmi.org/pdf/H050958.pdf
(6.14 MB) (6.14 MB)
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO