Your search found 2 records
1 Gotor, E.; Nedumaran, S.; Cenacchi, N.; Tran, N.; Dunston, S.; Dermawan, A.; Valera, H.; Wiberg, David; Tesfaye, K.; Mausch, K.; Langan, Simon. 2021. Land and water systems: looking to the future and a more resilient and sustainable society and environment. SocArXiv. 24p. [doi: https://doi.org/10.31235/osf.io/ajs6q]
Land management ; Water systems ; Water management ; Resilience ; Sustainability ; Society ; Climate change adaptation ; Climate change mitigation ; Water resources ; Models
(Location: IWMI HQ Call no: e-copy only Record No: H050899)
https://osf.io/preprints/socarxiv/ajs6q/download
https://vlibrary.iwmi.org/pdf/H050899.pdf
(1.01 MB) (1.01 MB)
Food, land, and water systems are facing unprecedented change. The world’s population is projected to grow to approximately 10 billion people by 2050, while aging and declining in some regions. Global average incomes are expected to keep increasing at a slow but steady pace. With increasing incomes and the ability of consumers to purchase more and better food in combination with population growth, food demand is projected to grow substantially over the next three decades. Meanwhile, demographic changes and economic development also drive urbanization, migration, and structural transformation of rural communities. At the same time changes to precipitation and temperature as well as the occurrence of extreme events driven by climate change are becoming more prevalent and impacting society and the environment. Currently, humanity is approaching or exceeding planetary boundaries in some areas, with over-use of limited productive natural resources such as water and phosphate, net emissions of greenhouse gases, and decreases in biodiversity.
Much is published about food and agriculture and the supporting/underpinning land and water systems, but no single source focuses regularly and systematically on the future of agriculture and food systems, particularly on the challenges and opportunities faced by developing countries. This working paper is part of an effort by the CGIAR foresight team to help fill that gap. The effort recognizes that there is much to learn from past experience, and there are clearly many urgent and immediate challenges, but given the pace and complexity of change we are currently experiencing, there is also an increasing need to look carefully into the future of food, land, and water systems to inform decision making today.

2 Urfels, A.; Mausch, K.; Harris, D.; McDonald, A. J.; Kishore, A.; Balwinder-Singh; van Halsema, G.; Struik, P. C.; Craufurd, P.; Foster, T.; Singh, V.; Krupnik, T. 2023. Farm size limits agriculture's poverty reduction potential in Eastern India even with irrigation-led intensification. Agricultural Systems, 207:103618. (Online first) [doi: https://doi.org/10.1016/j.agsy.2023.103618]
Farm size ; Poverty reduction ; Intensification ; Food security ; Climate resilience ; Smallholders ; Rice ; Sustainable agriculture ; Cropping systems ; Households ; Sustainable Development Goals ; Farm income ; Crop production ; Value chains / South Asia / India / Bihar / Indo-Gangetic Plains
(Location: IWMI HQ Call no: e-copy only Record No: H051731)
https://www.sciencedirect.com/science/article/pii/S0308521X23000239/pdfft?md5=2a024959f5d2befb681e065be718b7c8&pid=1-s2.0-S0308521X23000239-main.pdf
https://vlibrary.iwmi.org/pdf/H051731.pdf
(4.48 MB) (4.48 MB)
CONTEXT: Millions of people living in the Eastern Gangetic Plains (EGP) of India engage in agriculture to support their livelihoods yet are income poor, and food and climate insecure. To address these challenges, policymakers and development programs invest in irrigation-led agricultural intensification. However, the evidence for agricultural intensification to lift farmers' incomes above the poverty line remains largely anecdotal.
OBJECTIVE: The main objective of this study is to use a large household survey (n = 15,572; rice: 8244, wheat: 7328; 2017/18) to assess the link between agricultural intensification and personal daily incomes from farming (FPDI) in the rice-wheat systems of the EGP – the dominant cropping system of the region.
METHODS: We use the Intensification Benefit Index (IBI), a measure that relates farm size and household size to FPDI, to assess how daily incomes from rice-wheat production change with irrigation-led intensification across the EGP.
RESULTS AND CONCLUSIONS: Relative to the international poverty line of 1.90 Purchasing Power Parity (PPP)$ day-1 and accounting for variations in HH size in the analysis, we found that small farm sizes limit the potential for agricultural intensification from irrigation to transform the poverty status of households in the bottom three quartiles of the IBI. The estimated median FPDI of households with intensified systems in the bottom three quartiles is only 0.51 PPP$ day-1 (a 0.15 PPP$ gain). The median FPDI increases to 2.10 PPP$ day-1 for households in the upper quartile of the IBI distribution (a 0.30 PPP$ gain). Irrigation-led agricultural intensification of rice-wheat systems in the EGP may provide substantial benefits for resilience to climatic change and food security but achieving meaningful poverty reduction will require complementary investments.
SIGNIFICANCE: Transforming the poverty status of most smallholder farmers in the EGP requires diversified portfolios of rural on- and off-farm income-generating opportunities. While bolstering food- and climate security, agronomic intervention programs should consider smallholders' limited monetary incentives to invest in intensification. Irrigation-led agricultural intensification programs and policies should explicitly account for the heterogeneity in household resources, irrigation levels, and degree of dependence on agricultural income.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO