Your search found 2 records
1 Yang, Z.; Bai, J.; Zhang, W. 2021. Mapping and assessment of wetland conditions by using remote sensing images and POI data. Ecological Indicators, 127:107485. (Online first) [doi: https://doi.org/10.1016/j.ecolind.2021.107485]
Wetlands ; Mapping ; Assessment ; Remote sensing ; Water resources ; Water quality ; Vegetation ; Ecological indicators ; Landsat / China / Suzhou
(Location: IWMI HQ Call no: e-copy only Record No: H050366)
https://www.sciencedirect.com/science/article/pii/S1470160X21001503/pdfft?md5=57aabe38ec6376b9d2daeb9e7191bd00&pid=1-s2.0-S1470160X21001503-main.pdf
https://vlibrary.iwmi.org/pdf/H050366.pdf
(9.82 MB) (9.82 MB)
Wetlands are one of the most valuable natural resources on earth and play an important role in preserving biodiversity. However, due to economic development and human disturbances, many wetlands across the world have deteriorated and disappeared over the past several decades. By using remote sensing images and point of interest (POI) data, we proposed a knowledge-based raster mapping (KBRM)-based framework and implemented it in the assessment of wetland ecological conditions in Suzhou, China. Density maps of waterbodies, vegetation covers, imperviousness, roads, and POI values were derived and used as five ecological indicators that can represent the ecological conditions of wetlands. The KBRM approach was used to integrate these indicators into an overall rating and map wetland ecological conditions efficiently. Thus, spatial variations in wetland ecological conditions can be distinguished and represented in detail. Cross validation was conducted with water quality data at 15 field sampling sites. The validation results demonstrated that the overall wetland condition scores generated by our approach and the water quality index (WQI) values calculated from water quality data were strongly correlated. These findings confirm that our framework could be used to effectively map and evaluate spatial variations in wetland ecological conditions and provide more support for policy-making in wetland protection and management

2 Shi, H.; Luo, G.; Zheng, H.; Chen, C.; Hellwich, O.; Bai, J.; Liu, T.; Liu, S.; Xue, J.; Cai, P.; He, H.; Ochege, F. U.; Van de Voorde, T.; de Maeyer, P. 2021. A novel causal structure-based framework for comparing a basin-wide water-energy-food-ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins. Hydrology and Earth System Sciences, 25(2):901-925. [doi: https://doi.org/10.5194/hess-25-901-2021]
Water resources ; Energy ; Food security ; Ecology ; Nexus ; River basins ; Downstream ; Upstream ; Reservoirs ; International waters ; Water use ; Conflicts ; Agricultural production ; Models / Central Asia / Aral Sea Basin / Amu Darya River Basin / Syr Darya River Basin
(Location: IWMI HQ Call no: e-copy only Record No: H050537)
https://hess.copernicus.org/articles/25/901/2021/hess-25-901-2021.pdf
https://vlibrary.iwmi.org/pdf/H050537.pdf
(17.90 MB) (17.9 MB)
The previous comparative studies on watersheds were mostly based on the comparison of dispersive characteristics, which lacked systemicity and causality. We proposed a causal structure-based framework for basin comparison based on the Bayesian network (BN) and focus on the basin-scale water–energy–food–ecology (WEFE) nexus. We applied it to the Syr Darya River basin (SDB) and the Amu Darya River basin (ADB), of which poor water management caused the Aral Sea disaster. The causality of the nexus was effectively compared and universality of this framework was discussed. In terms of changes in the nexus, the sensitive factor for the water supplied to the Aral Sea changed from the agricultural development during the Soviet Union period to the disputes in the WEFE nexus after the disintegration. The water–energy contradiction of the SDB is more severe than that of the ADB, partly due to the higher upstream reservoir interception capacity. It further made management of the winter surplus water downstream of the SDB more controversial. Due to this, the water–food–ecology conflict between downstream countries may escalate and turn into a long-term chronic problem. Reducing water inflow to depressions and improving the planting structure prove beneficial to the Aral Sea ecology, and this effect of the SDB is more significant. The construction of reservoirs on the Panj River of the upstream ADB should be cautious to avoid an intense water–energy conflict such as the SDB's. It is also necessary to promote the water-saving drip irrigation and to strengthen the cooperation.

Powered by DB/Text WebPublisher, from Inmagic WebPublisher PRO